Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-12T07:24:08.061Z Has data issue: false hasContentIssue false

Infrared Propagating Electromagnetic Surface Waves Excited by Induction

Published online by Cambridge University Press:  23 December 2019

Jonathan R. Brescia
Affiliation:
Physics, University of Central Florida, Orlando FL 32816 USA KBRwyle, Beavercreek, OH, 45431
Justin W. Cleary
Affiliation:
Air Force Research Laboratory, Sensors Directorate, RYDH, Wright-Patterson AFB OH 45433 USA
Evan M. Smith
Affiliation:
Air Force Research Laboratory, Sensors Directorate, RYDH, Wright-Patterson AFB OH 45433 USA KBRwyle, Beavercreek, OH, 45431
Robert E. Peale*
Affiliation:
Physics, University of Central Florida, Orlando FL 32816 USA
Get access

Abstract

Propagating inhomogeneous electromagnetic waves called surface plasmon polaritons (SPPs) can be excited by free-space beams on corrugated conducting surfaces at resonance angles determined by corrugation period, permittivity, and optical frequency. SPPs are coupled to and co-propagate with surface charge displacements. Complete electrical isolation of individual conducting corrugations prevents the charge displacement necessary to sustain an SPP, such that excitation resonances of traveling SPPs are absent. However, SPPs can be excited via electric induction if a smooth conducting surface exists below and nearby the isolated conducting corrugations. The dependence of SPP excitation resonances on that separation is experimentally investigated here at long-wave infrared wavelengths. We find that excitation resonances for traveling SPPs broaden and disappear as the dielectric’s physical thickness is increased beyond ~1% of the free-space wavelength. The resonance line width increases with refractive index and optical thickness of the dielectric.

Type
Articles
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

de Mol, Nico J., Fischer, Marcel J. E., “Surface Plasmon Resonance: A General Introduction” in Surface Plasmon Resonance, Methods and Protocols, edited by Mol, Nico J., Fischer, Marcel J. E. (Springer Humana, 2010), pp. 1-14.CrossRefGoogle Scholar
Peale, R., Cleary, J., Shelton, D., Boreman, G., Soref, R., Buchwald, W., “Silicides for Infrared Surface Plasmon Resonance Biosensors,” Proc. Mat. Res. Soc. 1133-AA10-03 (2008).Google Scholar
Cleary, J. W., Medhi, G., Peale, R. E., Buchwald, W. R., Edwards, O., and Oladeji, I., “Infrared Surface Plasmon Resonance Biosensor,” Proc. SPIE 7673, 5 (2010).Google Scholar
Riffe, D. M., Hanssen, L. M., Sievers, A. J., Chabal, Y. J., and Christman, S. B., “Linewidth of H chemisorbed on W(100): An infrared study,” Surf. Sci. 161, L559 (1985).CrossRefGoogle Scholar
Cleary, J. W., Medhi, G., Peale, R. E., and Buchwald, W. R., “Long-wave infrared surface plasmon grating coupler,” Appl. Optics 49, 3102 (2010).CrossRefGoogle ScholarPubMed
Wolfe, W. L., “Optical materials,” in Handbook of Military Infrared Technology, Wolfe, W. L., ed. (Office of Naval Research, Washington D.C., 1965).CrossRefGoogle Scholar
Cardimona, D. A. and Huang, D. H., “New optical detector concepts for space applications,” Proc. SPIE 7679, 767903 (2010).CrossRefGoogle Scholar
Vahdani, M., Yaraghi, S., Neshasteh, H., Shahabadi, M., “Narrow-Band 4.3μm Plasmonic Schottky-Barrier Photodetector for CO2 Sensing,” Sensors Letters 3, 3500504 (2019)Google Scholar
Calhoun, S. R., Lowry, V. C., Stack, R., Evans, R. N., Brescia, J. R., Fredricksen, C. J., Nath, J., and Peale, R. E., “Effect of dispersion on metal-insulator-metal infrared absorption resonances,” MRS. Comm. 8, 830 (2018).CrossRefGoogle Scholar
Jonathan Brescia, Grating Coupler for Surface Waves Based on Electrical Displacement Currents, Undergraduate Honors Thesis (UCF, Orlando, 2018).Google Scholar
Gibson, R., Vangala, S., Oladeji, I. O., Smith, E., Khalizadeh-Rezaie, F., Leedy, K., Peale, R. E., and Cleary, J. W., “Conformal spray-deposited fluorine-doped tin oxide for mid- and long-wave infrared plasmonicsOptical Materials Express 7, 2477 (2017).CrossRefGoogle Scholar
Wu, C., Avitzour, Y., and Shvets, G., “Ultra-thin wide-angle perfect absorber for infrared frequencies,” Proc. SPIE, 7029, 70290W (2008).CrossRefGoogle Scholar
Hao, J., Wang, J., Liu, X., Padilla, W. J., Zhou, L., and Qiu, M.High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).CrossRefGoogle Scholar
Liu, N., Mesch, M., Weiss, T., Hentschel, M., and Giessen, H., “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342 (2010).CrossRefGoogle ScholarPubMed
Hao, J., Wang, J., Liu, X., Padilla, W. J., Zhou, L., and Qiu, M., “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).CrossRefGoogle Scholar
Wu, C., Neuner, B. III, John, J., Milder, A., Zollars, B., Savoy, S., and Shvets, G., “Large-area wide-angle spectrally selective plasmonic absorber,” Phys. Rev. B, 84, 075102 (2011).CrossRefGoogle Scholar
Zhang, B., Zhao, Y., Hao, Q., Kiraly, B., Khoo, I.-C., Chen, S., and Huang, T. J., “Polarization-independent dual-band infrared perfect absorber based on a metal–dielectric–metal elliptical nanodisk array,” Opt. Express 19, 15221 (2011).CrossRefGoogle ScholarPubMed
Wu, C. and Shvets, G., “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett. 37, 308 (2012).CrossRefGoogle ScholarPubMed
Lee, H. M. and Wu, J. C., “A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array,” J. Phys. D 45, 205101 (2012).CrossRefGoogle Scholar
Diem, M., Koschny, T., and Soukoulis, C. M., “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009).CrossRefGoogle Scholar
Liu, X., Starr, T., Starr, A. F., and Padilla, W. J., “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).CrossRefGoogle ScholarPubMed
Jiang, Z. H., Yun, S., Toor, F., Werner, D. H., and Mayer, T. S., “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano 5, 4641 (2011).CrossRefGoogle ScholarPubMed
Cheng, C. W., Abbas, M. N., Chiu, C. W., Lai, K. T., Shih, M. H., and Chang, Y.-C., “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20, 10376 (2012).CrossRefGoogle ScholarPubMed
Cheng, H., Chen, S., Yang, H., Li, J., An, X., Gu, C., and Tian, J., “A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime,” J. Opt. 14, 085102 (2012).CrossRefGoogle Scholar
Cheng, D., Xie, J., Zhang, H., Wang, C., Zhang, N., and Deng, L., “Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum,” J. Opt. Soc. Am. B 29, 1503 (2012).CrossRefGoogle Scholar
Hendrickson, J., Guo, J., Zhang, B., Buchwald, W and Soref, R., “A wide-band perfect light absorber at mid-wave infrared using multiplexed metal structures,” Optics Letters 37, 371 (2012).CrossRefGoogle Scholar
Nath, J., Panjwani, D., Khalilzadeh-Rezaie, F., Yesiltas, M., Smith, E. M., Ginn, J. C., Shelton, D. J., Hirschmugl, C., Cleary, J. W., Peale, R. E., “Infra-red spectral microscopy of standing-wave resonances in single metal-dielectric-metal thin-film cavity,” Proc. SPIE 9544, 95442M (2015).Google Scholar
Lefebvre, A., Costantini, D., Doyen, I., Lévesque, Q., Lorent, E., Jacolin, D., Greffet, J-J., Boutami, S., and Benisty, H.: CMOS compatible metalinsulator-metal plasmonic perfect absorbers. Opt. Mater. Express 6, 2389 (2016).CrossRefGoogle Scholar
Mason, J. A., Smith, S., and Wasserman, D., “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98, 241105 (2011).CrossRefGoogle Scholar
Ye, Y. Q., Jin, Y., and He, S., “Omnidirectional, polarization insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27, 498 (2010).CrossRefGoogle Scholar
Ma, Y., Chen, Q., Grant, J., Saha, S. C., Khalid, A., and Cumming, D. R. S., “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36, 945 (2011).CrossRefGoogle ScholarPubMed
He, X.-J., Wang, Y., Wang, J., Gui, T., and Wu, Q., “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Progress Electromagn. Res. 115, 381 (2011).CrossRefGoogle Scholar
Huang, L., Chowdhury, D. R., Ramani, S., Reiten, M. T., Luo, S.-N., Taylor, A. J., and Chen, H.-T., “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37, 154 (2012).CrossRefGoogle ScholarPubMed
Nath, J., Modak, S., Rezadad, I., Panjwani, D., Rezaie, F., Cleary, J. W., and Peale, R. E., “Far-infrared absorber based on standing-wave resonances in metal-dielectric-metal cavity,” Optics Express 23, 20366 (2015).CrossRefGoogle ScholarPubMed
Evans, R. N., Calhoun, S. R., Brescia, J. R., Cleary, J. W., Smith, E. M., and Peale, R. E., “Far-infrared bands in plasmonic metal-insulator-metal absorbers optimized for long-wave infrared,” MRS Advances 4, 667 (2019).CrossRefGoogle Scholar
Lockyear, M. J., Hibbins, A. P., Sambles, J. R., Hobson, P. A., and Lawrence, C. R., “Thin resonant structures for angle and polarization independent microwave absorption,” Appl. Phys. Lett. 94, 041913 (2009).CrossRefGoogle Scholar
Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., and Padilla, W. J., “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008).CrossRefGoogle ScholarPubMed
Cleary, J. W., Medhi, G., Shahzad, M., Rezadad, I., Maukonen, D., Peale, R. E., Boreman, G. D., Wentzell, S., and Buchwald, W. R., “Infrared surface polaritons on antimony,” Optics Express 20, 2693 (2012).CrossRefGoogle ScholarPubMed
Gorgulu, K., Gok, A., Yilmaz, M., Topalli, K., Bıyıklı, N., Okyay, Ali K., “All-Silicon Ultra-Broadband Infrared Light Absorbers,” Scientific Reports 6, 38589 (2016).CrossRefGoogle ScholarPubMed
Barho, F. B., Gonzalez-Posada, F., Milla-Rodrigo, M-J., Bomers, M., Cerutti, L., and Taliercio, T., “All-semiconductor plasmonic gratings for biosensing applications in the mid-infrared,” Optics Express 24, 16175 (2016).CrossRefGoogle ScholarPubMed
Adato, R.Yanik, A. A., Amsden, J. J., Kaplan, D. L., Omenetto, F. G., Hong, M. K., Erramilli, S., and Altug, H., “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” PNAS 106, 19227 (2009).CrossRefGoogle ScholarPubMed
Rodrigo, D., Limaj, O., Janner, D., Etezadi, D., García de Abajo, F. J., Pruneri, V., Altug, H., “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165 (2015).CrossRefGoogle ScholarPubMed