Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T04:13:42.556Z Has data issue: false hasContentIssue false

Investigation of phase separation in InGaN alloys by plasmon loss spectroscopy in a TEM

Published online by Cambridge University Press:  05 August 2016

Xiaoyi Wang
Affiliation:
Dept. Electronic & Electrical Eng., University of Sheffield, Mappin St., Sheffield S1 3JD, UK
Marie-Pierre Chauvat
Affiliation:
CIMAP, UMR 6252, CNRS-ENSICAEN-CEA-UCBN, 14050 Caen, cedex, France
Pierre Ruterana
Affiliation:
CIMAP, UMR 6252, CNRS-ENSICAEN-CEA-UCBN, 14050 Caen, cedex, France
Thomas Walther*
Affiliation:
Dept. Electronic & Electrical Eng., University of Sheffield, Mappin St., Sheffield S1 3JD, UK
Get access

Abstract

Phase separation of InxGa1-xN alloys into Ga-rich and In-rich regions was observed by a number of research groups for samples grown with high indium content, x. Due to the radiation sensitivity of InGaN to beam damage by fast electrons, high-resolution imaging in transmission electron microscopy (TEM) or core-loss electron energy-loss spectroscopy (EELS) may lead to erroneous results. Low-loss EELS can yield spectra of the plasmon loss regions at much lower electron fluxes. Unfortunately, due to their delayed edge onset, the low energetic core losses of Ga and In partially overlap with the plasmon peaks, all of which shift with indium content.

Here we demonstrate a method to quantify phase separation in InGaN thin films from the low-loss region in EELS by simultaneously fitting both plasmon and core losses over the energy range of 13-30eV. Phase separation is shown to lead to a broadening of the plasmon peak and the overlapping core losses, resulting in an unreliable determination of the indium concentration from analyzing the plasmon peak position alone if phase separation is present. For x=0.3 and x=0.59, the relative contributions of the binary compounds are negligibly small and indicate random alloys. For xnom.=0.62 we observed strong broadening, indicating phase separation.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ruterana, P., Nouet, G., Van der Stricht, W., Moerman, I and Considine, L., Appl. Phys. Lett. 72, 1742 (1998).CrossRefGoogle Scholar
Doppalapudia, D., Basu, S. N., Ludwig, K. F. Jr. and Moustakas, T. D., J. Appl. Phys. 84, 1389(1998).CrossRefGoogle Scholar
Zhu, M., You, S., Detchprohm, T., Paskova, T., Preble, E. A., Hanser, D. and Wetzel, C., Phys. Rev B 81, 125325 (2010).CrossRefGoogle Scholar
Kyu, P.Il., Ki, K.M., Ho, B.S., Woo, O.Y., Yeon, S.T., Ju, P.S., Seok, K.Y., Tae, M.Y. and Joon, K.D., Appl. Phys. Lett. 87, 061906 (2005).Google Scholar
Sheng, L.Y., Jeng, M.K., Hsu, C., Feng, S.W., Cheng, Y.C., Liao, C.C., Yang, C.C., Chou, C.C., Lee, C.M., and Chyi, J.I., Appl. Phys. Lett. 77, 2988 (2000).Google Scholar
Singh, R., Doppalapudi, D., Moustakas, T.D. and Romano, L.T., Appl. Phys. Lett. 70, 1089 (1997).CrossRefGoogle Scholar
Ho, I. and Stringfellow, G.B., Appl. Phys. Lett. 69, 2701 (1996).CrossRefGoogle Scholar
O’Neill, J.P., Ross, I.M., Cullis, A.G., Wang, T. and Parbrook, P.J., Appl. Phys. Lett. 83, 1965 (2003).CrossRefGoogle Scholar
Smeeton, T.M., Kappers, M.J., Barnard, J.S., Vickers, M.E. and Humphreys, C.J., Appl. Phys. Lett. 83, 5419 (2003).CrossRefGoogle Scholar
Matsuoka, T., Sasaki, T. and Katsui, A., Optoelectronics 5, 53 (1990).Google Scholar
Matsuoka, T., Yoshimoto, N., Sasaki, T. and Katsui, A., J. Electron. Mater. 21, 157 (1992).CrossRefGoogle Scholar
Nakamura, S., Microelectron. J. 25, 651 (1994).CrossRefGoogle Scholar
Shimizu, M., Hiramatsu, K. and Sawaki, N., J. Cryst. Growth. 145, 209 (1994).CrossRefGoogle Scholar
Nakamura, S., Mukai, T., Senoh, M., Nagahama, S. and Iwasa, N., J. Appl. Phys. 74, 3911 (1993).CrossRefGoogle Scholar
Walther, T., Wolf, F., Recnik, A. and Mader, W., Int. J. Mater. Res. 97, 934 (2006).Google Scholar
Potapov, P.L. and Schryvers, D., Ultramicroscopy 99, 73 (2004).CrossRefGoogle Scholar
Mkhoyan, K.A., Silcox, J., Alldredge, E.S., Ashcroft, N.W., Lu, H., Schaff, W.J. and Eastman, L.F., Appl. Phys. Lett. 82, 1407 (2003).CrossRefGoogle Scholar
Wang, X., Chauvat, M.P., Ruterana, P. and Walther, T., Semicond. Sci. Technol. 30 (11), 114011 (2015).CrossRefGoogle Scholar
Pelá, R.R., Caetano, C., Marques, M., Ferreira, L.G., Furthmüller, J. and Teles, L.K., J. Appl. Phys. 98, 151907 (2011).Google Scholar
Walther, T. and Wang, X., J. Microsc. 252 (2), 151 (2015). doi: 10.1111/jmi.12291 Google Scholar