Skip to main content Accessibility help

Layered Sodium Manganese Oxide Na2Mn3O7 as an Insertion Host for Aqueous Zinc-ion Batteries

  • Krishnakanth Sada (a1) and Prabeer Barpanda (a1)


Aqueous rechargeable batteries are attractive owing to their higher operational safety, high ionic conductivity, scalable and easy manufacturing. These aqueous batteries form an economic option for large-scale (grid) power storage. In the aqueous battery sector, Mn-based compounds are highly attractive with their non-toxic nature, low-cost, rich mineral chemistry and robust operational safety. Several Mn-based systems like LiMn2O4 spinel and LiNi1/3Mn1/3Co1/3O2 have seen successful commercialization. Pursuing Mn-based materials, we have shown layer structured Na2Mn3O7 as a versatile cathode material for non-aqueous systems like Li-, Na- and K-ion batteries. In the current work, we have exploited Na2Mn3O7 as a cathode material for aqueous Zn-ion battery for the first time. This Na-Mn-O ternary system was prepared using two-step emulsion-based synthesis. The phase-pure Na2Mn3O7 was formed in a triclinic structure with a space group of P-1. It exhibited versatile electrochemical insertion of different ions like Li-, Na- and K-ions involving phase transition. Na2Mn3O7 exhibited reversible Zn-ion intercalation delivering capacity of 245 mA h g-1 with a nominal voltage of 1.5 V. Upon discharge, it triggered phase transformation to an unknown phase. Layered Na2Mn3O7 oxide was found to act as an efficient cathode for Zn-ion batteries with good cycling stability.


Corresponding author

*Corresponding Author E-mail: Krishnakanth Sada,


Hide All
1.Dunn, B., Kamath, H., Tarascon, J.-M., Science, 334, 928 (2011).
2.Yabuuchi, N., Kubota, K., Dahbi, M., Komaba, S., Chem. Rev., 23, 11636 (2014).
3.Kim, H., Hong, J., Park, K.-Y., Kim, H., Kim, S.-W., Kang, K., Chem. Rev., 114, 11788 (2014).
4.Sada, K., Senthilkumar, B., Barpanda, P., ACS Appl. Energy Mater., 1, 6719 (2018).
5.Sada, K., Senthilkumar, B., Barpanda, P., ACS Appl. Energy Mater., 1, 5410 (2018).
6.Sada, K., Senthilkumar, B., Barpanda, P., ECS Trans., 85, 207 (2018).
7.Adamczyk, E., Pralong, V., Chem. Mater., 29, 4645 (2017).
8.Kubota, K., Dahbi, M., Hosaka, T., Kumakura, S., Komaba, S., Chem. Rec., 18, 459 (2018).
9.Kim, H., Kim, J. C., Bianchini, M., Seo, D.-H., Garcia, J. R., Ceder, G., Adv. Energy Mater., 9, 1702384 (2018).
10.Sada, K., Senthilkumar, B., Barpanda, P., Chem. Commun., 53, 8588 (2017).
11.Fang, G., Zhou, J., Pan, A., Liang, S., ACS Energy Lett., 3, 2480 (2018).
12.Song, M., Tan, H., Chao, D., Fan, H. J., Adv. Funct. Mater., 28, 1802564 (2018).
13.Momma, K., Izumi, F., J. Appl. Crystallogr., 44, 1272 (2011).
14.Maslen, E. N., Streltsov, V. A., Streltsova, N. R., Ishizawa, N., Acta. Cryst., B51, 929 (1995).
15.Chang, F., Jansen, M., Anorg, Z.. Allg. Chem., 531, 177 (1985).
16.Pan, H., Shao, Y., Yan, P., Cheng, Y., Han, K. S., Nie, Z., Wang, C., Yang, J., Li, X., Bhattacharya, P., Mueller, K. T., Liu, J., Nat. Energy, 1, 16039 (2016).
17.Qiu, N., Chen, H., Yang, Z., Sun, S., Wang, Y., Electrochim. Acta, 72, 154 (2018).
18.Alfaruqi, M. H., Gim, J., Kim, S., Song, J., Pham, D. T., Jo, J., Xiu, Z., Mathew, V., Kim, J., Electrochem. Commun., 60, 121 (2015).
19.Han, S. D., Kim, S., Li, D., Petkov, V., Yoo, H. D., Phillips, P. J., Wang, H., Kim, J. J., More, K. L., Key, B., Klie, R. F., Cabana, J., Stamenkovic, V. R., Fister, T. T., Markovic, N. M., Burrel, A. K., Tepavcevic, S., Vaughey, J. T., Chem. Mater., 29, 4874 (2017).
20.Wu, X., Li, Y., Xiang, Y., Liu, Z., He, Z., Wu, X., Li, Y., Xiong, L., Li, C., Chen, J., J. Power Sources, 336, 35 (2016).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed