Hostname: page-component-6b989bf9dc-llglr Total loading time: 0 Render date: 2024-04-14T20:51:15.600Z Has data issue: false hasContentIssue false

Life Cycle Assessment of III-V Precursors for Photovoltaic and Semiconductor Applications

Published online by Cambridge University Press:  13 March 2018

Brittany L. Smith*
Affiliation:
Rochester Institute of Technology, Rochester, NY14623, U.S.A.
Callie W. Babbitt
Affiliation:
Rochester Institute of Technology, Rochester, NY14623, U.S.A.
Kelsey Horowitz
Affiliation:
National Renewable Energy Laboratory, Golden, CO80401, U.S.A.
Gabrielle Gaustad
Affiliation:
Rochester Institute of Technology, Rochester, NY14623, U.S.A.
Seth M. Hubbard
Affiliation:
Rochester Institute of Technology, Rochester, NY14623, U.S.A.
*
*(Email: bls9317@rit.edu)
Get access

Abstract

This study provides detailed information on the manufacture of III-V metal organic vapor phase epitaxy precursors through extensive literature and patent research. This data informed a cradle-to-gate life cycle assessment of these chemicals. Reported impacts include cumulative energy demand and greenhouse gas emissions. The results were interpreted to identify sources of environmental burden within the life cycle and were compared to energy demand reported in previous studies.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jones, A. C., Hitchman, M. L.. Chemical Vapour Deposition: Precursors, Processes and Applications, (Royal Society of Chemistry, 2009).Google Scholar
Strategy Analytics: RF GaAs Device Forecast and Outlook: 2016 – 2021. Available at: https://www.strategyanalytics.com/… (accessed 22 October 2017).Google Scholar
Strategy Analytics: RF Compound Semiconductor Revenue Will Grow to $11 Billion by 2021. Available at: https://www.strategyanalytics.com/… (accessed 22 October 2017).Google Scholar
Mohr, N. J., Schermer, J. J., Huijbregts, M. A. J., Meijer, A., Reijnders, L.. Prog. Photovolt. 15, 163179 (2007).Google Scholar
Fthenakis, V. M., Kim, H. C.. Prog. Photovolt. 21, 379388 (2013).Google Scholar
Peharz, G., Dimroth, F.. Prog. Photovolt. 13, 627634 (2005).Google Scholar
Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., Weidema, B., Intl. J. Life Cyc. Assess. 21, 12181230 (2016).Google Scholar
Koch, J. (private communciation).Google Scholar
Gibson, L. (private communciation).Google Scholar
Jiménez-González, C., Kim, S., Overcash, M. R., Intl. J. Life Cyc. Assess. 5, 153159 (2000).Google Scholar
McGinnis, R. L., Elimelech, M., Desalination 207, 370382 (2007).Google Scholar
Tsudera, T., Tanaka, S., Iwai, D., Nishiwaki, H., Honma, T., U.S. Patent No. 7179931B2 (20 February 2007).Google Scholar
Tran, N. H., Deavenport, D. L., Post, C. W., U.S. Patent No. 5015750A (14 May 1991).Google Scholar
Hnizda, V. F., Kraus, C. A., J. Am. Chem. Soc. 60, 2276–2276 (1938).CrossRefGoogle Scholar
Kim, S., Overcash, M., J. Chem. Tech. Biotech. 78, 9951005 (2003).Google Scholar
Maggiarosa, N., Preetz, A., Sikora, D. J., U.S. Patent No. 8513447B1 (20 August 2013).Google Scholar
Carty, A. J., Tuck, D. G., J. Chem. Soc. A, 1081-1087 (1966).Google Scholar
Laubengayer, A. W., Schirmer, F. B., J. Am. Chem. Soc. 62, 15781583 (1940).Google Scholar
Nuss, P., Eckelman, M. J., PLoS One 9, e101298 (2014).Google Scholar
Geisler, G., Hofstetter, T. B., Hungerbühler, K.. Intl. J. Life Cyc. Assess. 9, 101113 (2004).Google Scholar