Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T05:33:10.042Z Has data issue: false hasContentIssue false

Nanopatterning Hexagonal Boron Nitride with Helium Ion Milling: Towards Atomically-Thin, Nanostructured Insulators

Published online by Cambridge University Press:  01 February 2018

S. Matt Gilbert*
Affiliation:
Department of Physics, University of California, Berkeley, CA, 94720 Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 Kavli Energy Nanosciences Institute, Berkeley, CA, 94720
Stanley Liu
Affiliation:
Department of Physics, University of California, Berkeley, CA, 94720 Kavli Energy Nanosciences Institute, Berkeley, CA, 94720
Gabe Schumm
Affiliation:
Department of Physics, University of California, Berkeley, CA, 94720 Kavli Energy Nanosciences Institute, Berkeley, CA, 94720
Alex Zettl
Affiliation:
Department of Physics, University of California, Berkeley, CA, 94720 Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 Kavli Energy Nanosciences Institute, Berkeley, CA, 94720
Get access

Abstract

In this report, we demonstrate the use of helium ion milling for the controllable fabrication of nanostructures in few-layer hexagonal boron nitride (h-BN). Using the direct-write lithographic capabilities of a scanning helium ion microscope (HIM), nanopores with diameters as small as 4 nm and nanoribbons with widths of 3 – 10 nm are etched from suspended h-BN sheets. This ability to pattern h-BN sheets with high-throughput and sub-10 nm precision paves the way for future studies that make use of atomically-thin, nanostructured insulators such as those needed for nanopore sequencing and patterned van der Waals heterostructures.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gannett, W., Regan, W., Watanabe, K., Taniguchi, T., Crommie, M.F., and Zettl, A., Appl. Phys. Lett. 98, 242105 (2011).CrossRefGoogle Scholar
Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K.L., and Hone, J., Nat. Nanotechnol. 5, 722 (2010).CrossRefGoogle Scholar
Cui, X., Lee, G.-H., Kim, Y.D., Arefe, G., Huang, P.Y., Lee, C.-H., Chenet, D.A., Zhang, X., Wang, L., Ye, F., Pizzocchero, F., Jessen, B.S., Watanabe, K., Taniguchi, T., Muller, D.A., Low, T., Kim, P., and Hone, J., Nat. Nanotechnol. 10, 534 (2015).CrossRefGoogle Scholar
Zhou, Z., Hu, Y., Wang, H., Xu, Z., Wang, W., Bai, X., Shan, X., and Lu, X., Sci. Rep. 3, 13770 (2013).Google Scholar
Ergen, O., Gilbert, S.M., Pham, T., Turner, S.J., Tan, M.T.Z., Worsley, M.A., and Zettl, A., Nat. Mater. 16, (2017).CrossRefGoogle Scholar
Tran, T.T., Bray, K., Ford, M.J., Toth, M., and Aharonovich, I., Nat. Nanotechnol. 11, 37 (2015).CrossRefGoogle Scholar
Liu, Z., Gong, Y., Zhou, W., Ma, L., Yu, J., Idrobo, J.C., Jung, J., MacDonald, A.H., Vajtai, R., Lou, J., and Ajayan, P.M., Nat. Commun. 4, ncomms3541 (2013).Google Scholar
Lee, G.-H., Cui, X., Kim, Y.D., Arefe, G., Zhang, X., Lee, C.-H., Ye, F., Watanabe, K., Taniguchi, T., Kim, P., and Hone, J., ACS Nano 9, 7019 (2015).CrossRefGoogle Scholar
Lu, G., Wu, T., Yuan, Q., Wang, H., Wang, H., Ding, F., Xie, X., and Jiang, M., Nat. Commun. 6, (2015).Google Scholar
Chen, X., Wu, Y., Wu, Z., Han, Y., Xu, S., Wang, L., Ye, W., Han, T., He, Y., Cai, Y., and Wang, N., Nat. Commun. 6, 7315 (2015).CrossRefGoogle Scholar
Pizzocchero, F., Gammelgaard, L., Jessen, B.S., Caridad, J.M., Wang, L., Hone, J., Bøggild, P., and Booth, T.J., Nat. Commun. 7, 11894 (2016).CrossRefGoogle Scholar
Liu, Z., Ma, L., Shi, G., Zhou, W., Gong, Y., Lei, S., Yang, X., Zhang, J., Yu, J., Hackenberg, K.P., Babakhani, A., Idrobo, J.-C., Vajtai, R., Lou, J., and Ajayan, P.M., Nat. Nanotechnol. 8, 119 (2013).CrossRefGoogle Scholar
Wang, L., Meric, I., Huang, P.Y., Gao, Q., Gao, Y., Tran, H., Taniguchi, T., Watanabe, K., Campos, L.M., Muller, D.A., Guo, J., Kim, P., Hone, J., Shepard, K.L., and Dean, C.R., Science 342, 614 (2013).CrossRefGoogle Scholar
Handschin, C., Fülöp, B., Makk, P., Blanter, S., Weiss, M., Watanabe, K., Taniguchi, T., Csonka, S., and Schönenberger, C., Appl. Phys. Lett. 107, 183108 (2015).CrossRefGoogle Scholar
Forsythe, C., Zhou, X., Taniguchi, T., Watanabe, K., Pasupathy, A., Moon, P., Koshino, M., Kim, P., and Dean, C.R., (2017).Google Scholar
Gilbert, S.M., Dunn, G., Azizi, A., Pham, T., Shevitski, B., Dimitrov, E., Liu, S., Aloni, S., and Zettl, A., Sci. Rep. 7, 15096 (2017).CrossRefGoogle Scholar
Sinitskii, A., Erickson, K.J., Lu, W., Gibb, A.L., Zhi, C., Bando, Y., Golberg, D., Zettl, A., and Tour, J.M., ACS Nano 8, 9867 (2014).CrossRefGoogle Scholar
Erickson, K.J., Gibb, A.L., Sinitskii, A., Rousseas, M., Alem, N., Tour, J.M., and Zettl, A.K., Nano Lett. 11, 3221 (2011).CrossRefGoogle Scholar
Park, C.-H. and Louie, S.G., Nano Lett. 8, 2200 (2008).CrossRefGoogle Scholar
Han, M.Y., Özyilmaz, B., Zhang, Y., and Kim, P., Phys. Rev. Lett. 98, 206805 (2007).CrossRefGoogle Scholar
Liu, S., Lu, B., Zhao, Q., Li, J., Gao, T., Chen, Y., Zhang, Y., Liu, Z., Fan, Z., Yang, F., You, L., and Yu, D., Adv. Mater. 25, 4549 (2013).CrossRefGoogle Scholar
Feng, J., Liu, K., Bulushev, R.D., Khlybov, S., Dumcenco, D., Kis, A., and Radenovic, A., Nat. Nanotechnol. 10, 1070 (2015).CrossRefGoogle Scholar
Garaj, S., Liu, S., Golovchenko, J.A., and Branton, D., Proc. Natl. Acad. Sci. 110, 12192 (2013).CrossRefGoogle Scholar
Fischbein, M.D. and Drndić, M., Appl. Phys. Lett. 93, 113107 (2008).CrossRefGoogle Scholar
Surwade, S.P., Smirnov, S.N., Vlassiouk, I. V., Unocic, R.R., Veith, G.M., Dai, S., and Mahurin, S.M., Nat. Nanotechnol. 10, 459 (2015).CrossRefGoogle Scholar
Cohen-Tanugi, D. and Grossman, J.C., Nano Lett. 12, 3602 (2012).CrossRefGoogle Scholar
Kim, K.K., Hsu, A., Jia, X., Kim, S.M., Shi, Y., Hofmann, M., Nezich, D., Rodriguez-Nieva, J.F., Dresselhaus, M., Palacios, T., and Kong, J., Nano Lett. 12, 161 (2012).CrossRefGoogle Scholar
Regan, W., Alem, N., Alemán, B., Geng, B., Girit, Ç, Maserati, L., Wang, F., Crommie, M., and Zettl, A., Appl. Phys. Lett. 96, 113102 (2010).CrossRefGoogle Scholar
Iberi, V., Liang, L., Ievlev, A. V., Stanford, M.G., Lin, M.-W., Li, X., Mahjouri-Samani, M., Jesse, S., Sumpter, B.G., Kalinin, S. V., Joy, D.C., Xiao, K., Belianinov, A., and Ovchinnikova, O.S., Sci. Rep. 6, 30481 (2016).CrossRefGoogle Scholar
Deng, Y., Huang, Q., Zhao, Y., Zhou, D., Ying, C., and Wang, D., (2016).Google Scholar
Emmrich, D., Beyer, A., Nadzeyka, A., Bauerdick, S., Meyer, J.C., Kotakoski, J., and Gölzhäuser, A., Appl. Phys. Lett. 108, 163103 (2016).CrossRefGoogle Scholar