Skip to main content Accessibility help
×
Home

Piezoresistive characterization of graphene/metakaolin based geopolymeric mortar composites

  • C. Lamuta (a1) (a2), L. Bruno (a2), S. Candamano (a3) and L. Pagnotta (a2)

Abstract

Geopolymers are recently developed ceramic materials produced by alkaline activation of thermally activated natural materials such as metakaolin. Due to their promising application in the field of structural components, the presence of a piezoresistive effect is a very useful property for such materials because it allows the real time self-monitoring of civil infrastructures. As observed for cement-based materials, the use of a conductive filler can enhance the piezoresistive response by avoiding measuring issues related to the electrical polarization. In this work we present preliminary results about the piezoresistive characterization of a metakaolin based geopolymeric mortar filled with graphene nanoplatelets. Composites with different graphene weight concentrations (0, 0.1, 0.5, 1%) were produced and the gauge factor (the ratio between the electrical resistance variation and the imposed strain) was calculated by means of dynamic four-probe resistance measurements. Very high gauge factor values (in the range of 1000-2000) were recorded and they can vary according to the dispersion quality of the graphene nanoplatelets into the ceramic matrix.

Copyright

Corresponding author

*Corresponding author: caterinalamuta@gmail.com

References

Hide All
1. Ou, J., Proc. SPIE 5851 (2004), 147162.
2. Masri, S.F. et al. , Smart Mater. Struct. 13(6) (2004), 12691283.
3. Chong, K.P., J. Intell. Mater. Syst. Struct. 9 (11) (1999), 892898.
4. De Backer, H., De Corte, W., Van Bogaert, P., 45 (12) (2003), 822826, 830.
5. Meizbacher, C.I., Kersey, A.D., Friebele, E.J., Smart Mater. Struct. 5 (2) (1999), 196208.
6. Song, G., Gu, H., Mo, Y.L., Hsu, T., Dhonde, H., Zhu, R.H., Proc. SPIE 5765 (2005), 108119.
7. Li, H., Liu, Z.-q., Li, Z.-w., Ou, J.-p., Adv. Struct. Eng. 7 (6) (2004), 495501.
8. Inada, H., Okuhara, Y., Kumagai, H., Proc. SPIE 5391 (2004), 609617.
9. Davidovits, J., Geopolymer Chemistry and Application (3rd ed.) Institute Geopolymer, Saint Quentin, France 2008.
10. Alomayri, T., Shaikh, F.U.A., I.M., Mater Design, 57 (2014), 360365.
11. Yodsudjai, W. et al. , in Development, and Applications of Engineering Ceramics and Composites: Ceramic Transactions, New York 2010, vol. 215.
12. Hanzlicekw, T., Steinerova, M., Vondrakova, , J. Am. Ceram. Soc. , 2006, Vol 89(3), 968970.
13. Davidovits, J., Davidovics, M., Proc. 36th Int SAMPE symposium (1991), 19391949.
14. Candamano, S. et al. , Chemical Engineering Research and Design 96, (2015).
15. Wen, S. and Chung, D. D. L., ACI Materials Journal/March-April 2007, 171179.
16. Coppola, L., Buoso, A., Corazza, F., IX INSTM CONFERENCE, 2013.
17. Baoguo, H., Guofu, Q., Haifeng, J., DOI 10.1007/s11595-012-0542-z.
18. Chung, D. D. L., Journal of Intelligent Material Systems and Structures 00, (2002).
19. Han, B., Ou, J., Sensors and Actuators A 138 (2007), 294298.
20. Kim, H.K., Park, I.S., Lee, H.K., Composite Structures 116 (2014), 713719.
21. Saafi, M. et al. , Smart Mater. Struct. 23 (2014), 065006 (10pp).
22. Hardjito, D., Wallah, S.E., Sumajouw, D.M., Rangan, B.V., ACI Mater. J. 101 (2004).
23. Galao, O., Baeza, F.J., Zornoza, E., Garcés, P., Cement & Concrete Composites 46 (2014) 9098.
24. Zhang, L et al. , (2008), J Am Ceram Soc 91:13461349.
25. Terauds, K et al. (2010), J Eur Ceram Soc 30:22032207.
26. Riedel, R et al. (2010), J Am Ceram Soc 93:920924.
27. Wang, Y, Zhang, L, Fan, Y, Jiang, D, An, L (2009), J Mater Sci 44(11):28142819.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed