Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T02:34:44.842Z Has data issue: false hasContentIssue false

Production of aluminum nanoparticles by wet mechanical milling

Published online by Cambridge University Press:  22 October 2020

S. Mancillas-Salas
Affiliation:
Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Unidad Saltillo, AV. Industria Metalúrgica 1062, Ramos Arizpe, 25900, México
P. Hernández-Rodríguez
Affiliation:
Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Unidad Saltillo, AV. Industria Metalúrgica 1062, Ramos Arizpe, 25900, México Instituto Tecnológico Superior de Loreto. Departamento de Investigación y Posgrado. Carretera Tierra Blanca-Loreto km 22, 98800, Zacatecas, México.
A.C. Reynosa-Martínez
Affiliation:
Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Unidad Saltillo, AV. Industria Metalúrgica 1062, Ramos Arizpe, 25900, México
E. López-Honorato*
Affiliation:
Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Unidad Saltillo, AV. Industria Metalúrgica 1062, Ramos Arizpe, 25900, México
*
*Corresponding author. E-mail: honoratole@ornl.gov
Get access

Abstract

One of the great challenges in the use of nanomaterials is their production at low costs and high yields. In this work aluminum nanoparticles, from aluminum powder, were produced by wet mechanical milling through a combination of different attrition milling conditions such as ball-powder ratio (BPR) and the amount of solvent used. It was observed that at 600 rpm with a BPR of 500/30 g for 12 h, it was possible to produce nanoparticles with a size close to 20 nm, while at 750 rpm with a BPR of 380/12.6 g for 12 h, nanoparticles of approximately 10 nm were obtained. Scanning and transmission electron microscopy confirmed that the milling product is an agglomeration of nanoparticles with different sizes. These results show the feasibility of obtaining aluminum nanoparticles by mechanical milling using only ethanol as solvent, avoiding hazardous by-products obtained from chemical routes, and the use of complicated methods such as laser ablation and arc discharge.

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bashir, M. I., Shafiq, M., Naeem, M., Zaka-ul-Islam, M., Díaz-Guillén, J. C., Lopez-Badillo, C. M. and Zakaullah, M. Enhanced surface properties of aluminum by PVD-TiN coating combined with cathodic cage plasma nitriding. Surface and Coatings Technology, 2017; 327: 59-65.CrossRefGoogle Scholar
Jiang, Aifeng, Wang, Fang, Xia, Debin, Li, Mengru, Qiang, Liangsheng, Zhu, Zhaoyang, Wang, Ping, Fan, Ruiqing, Lin, Kaifeng and Yang, Yulin. Aluminum nanoparticles manufactured using a ball-milling method with ammonium chloride as a grinding aid: achieving energy release at low temperature. New Journal of Chemistry, 2019; 43: 1851-1856.CrossRefGoogle Scholar
Mahendiran, Chinnathambi, Ganesan, Raman and Gedanken, Aharon. Sonoelectrochemical Synthesis of Metallic Aluminum Nanoparticles. European Journal of Inorganic Chemistry, 2009; 2009: 2050-2053.CrossRefGoogle Scholar
Mukherjee, D., Rai, A. and Zachariah, M. R. Quantitative laser-induced breakdown spectroscopy for aerosols via internal calibration: Application to the oxidative coating of aluminum nanoparticles. Journal of Aerosol Science, 2006; 37: 677-695.CrossRefGoogle Scholar
Hernández-Rodríguez, Pedro and López-Honorato, Eddie. Polymer derived SiC environmental barrier coatings with superwetting properties. Ceramics International, 2017; 43: 11289-11295.CrossRefGoogle Scholar
Kulkarni, Devdatta P., Vajjha, Ravikanth S., Das, Debendra K. and Oliva, Daniel. Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant. Applied Thermal Engineering, 2008; 28: 1774-1781.CrossRefGoogle Scholar
Peng, De-Xing, Kang, Yuan, Chen, Shih-Kang, Shu, Fu-Chun and Chang, Yeon-Pun. Dispersion and tribological properties of liquid paraffin with added aluminum nanoparticles. Lubrication, Industrial and Tribology, 2010; 62: 341-348.Google Scholar
Luksiene, Zivile. 16 - Nanoparticles and their potential application as antimicrobials in the food industry. Grumezescu, Alexandru Mihai. Food Preservation. Academic Press. 2017. 567-601.Google Scholar
Li, Heting, Meziani, Mohammed J., Lu, Fushen, Bunker, Christopher E., Guliants, Elena A. and Sun, Ya-Ping. Templated Synthesis of Aluminum Nanoparticles - A New Route to Stable Energetic Materials. The Journal of Physical Chemistry C, 2009; 113: 20539-20542.CrossRefGoogle Scholar
Rai, Ashish, Lee, Donggeun, Park, Kihong and Zachariah, Michael R. Importance of Phase Change of Aluminum in Oxidation of Aluminum Nanoparticles. The Journal of Physical Chemistry B, 2004; 108: 14793-14795.CrossRefGoogle Scholar
Eliezer, S., Eliaz, N., Grossman, E., Fisher, D., Gouzman, I., Henis, Z., Pecker, S., Horovitz, Y., Fraenkel, M., Maman, S. and Lereah, Y. Synthesis of nanoparticles with femtosecond laser pulses. Physical Review B, 2004; 69: 144119.CrossRefGoogle Scholar
Baladi, Arash and Sarraf Mamoory, Rasoul. Investigation of different liquid media and ablation times on pulsed laser ablation synthesis of aluminum nanoparticles. Applied Surface Science, 2010; 256: 7559-7564.CrossRefGoogle Scholar
Crouse, C. A., Shin, E., Murray, P. T. and Spowart, J. E. Solution assisted laser ablation synthesis of discrete aluminum nanoparticles. Materials Letters, 2010; 64: 271-274.CrossRefGoogle Scholar
Kumar, Bhupesh and Thareja, Raj K. Synthesis of nanoparticles in laser ablation of aluminum in liquid. Journal of Applied Physics, 2010; 108: 064906.CrossRefGoogle Scholar
Pomfret, Michael B., Brown, Douglas J., Epshteyn, Albert, Purdy, Andrew P. and Owrutsky, Jeffrey C. Electrochemical Template Deposition of Aluminum Nanorods Using Ionic Liquids. Chemistry of Materials, 2008; 20: 5945-5947.CrossRefGoogle Scholar
Han, Quanquan, Setchi, Rossitza and Evans, Sam L. Characterisation and milling time optimisation of nanocrystalline aluminium powder for selective laser melting. The International Journal of Advanced Manufacturing Technology, 2017; 88: 1429-1438.CrossRefGoogle Scholar
Suryanarayana, C. Mechanical alloying and milling. Progress in Materials Science, 2001; 46: 1- 184.CrossRefGoogle Scholar
Ramezan, M. and Neitzert, T. Mechanical milling of aluminum powder using planetary ball milling process. Journal of Achievements in Materials and Manufacturing Engineering, 2012; 55.Google Scholar
Knieke, Catharina, Berger, Angela, Voigt, Michael, Taylor, Robin N. Klupp, Röhrl, Peukert, Jonas and, Wolfgang. Scalable production of graphene sheets by mechanical delamination. Carbon, 2010; 48: 3196-3204.CrossRefGoogle Scholar
Mancillas-Salas, Sergio, Barroso-Flores, Joaquín, Villaurrutia, Rafael, García-Montalvo, Verónica and López-Honorato, Eddie. Production of few-layer graphene by wet media milling using organic solvents and different types of graphite. Ceramics International, 2020; 46: 2413-2420.CrossRefGoogle Scholar
Rodriguez, J. A., Gallardo, J. M. and Herrera, E. J. Structure and properties of attrition-milled aluminium powder. Journal of Materials Science, 1997; 32: 3535-3539.CrossRefGoogle Scholar
Razavi-Tousi, S. S. and Szpunar, J. Effect of ball size on steady state of aluminum powder and efficiency of impacts during milling. Powder Technology, 2015; 284: 149-158.CrossRefGoogle Scholar
McMahon, Brandon W., Perez, Jesus Paulo L., Yu, Jiang, Boatz, Jerry A. and Anderson, Scott L. Synthesis of Nanoparticles from Malleable and Ductile Metals Using Powder-Free, Reactant-Assisted Mechanical Attrition. ACS Applied Materials & Interfaces, 2014; 6: 19579-19591.CrossRefGoogle ScholarPubMed