Skip to main content

Role of the Shuttleworth effect in adhesion on elastic surfaces

  • Shayandev Sinha (a1) and Siddhartha Das (a1)

The Shuttleworth effect ensures that at an interface, where one of the phases is an elastic solid, surface stress is not equal to the surface energy. In this paper, we provide a free energy based approach to quantify the impact of the Shuttleworth effect in the adhesion of a rigid, spherical particle on an elastic solid. Our paper has four key findings. Firstly, we demonstrate that the difference in the elastic-solid-particle surface stress and surface energies is linearly proportional to the adhesion energy. Secondly, we establish that the surface stresses being larger than the surface energies provide the sufficient condition for an energetically favorable adhesion. Thirdly, we show that for a given adhesion energy and solid-vapor surface energy increase in particle-vapor surface energy makes the adhesion, in presence of the Shuttleworth effect, more favorable. Finally, and most importantly, we identify the necessary parameter space corresponding to which the Shuttleworth effect may or may not enhance the adhesion as compared to the case that does not account for the Shuttleworth effect. We anticipate that our findings will significantly impact our understanding of a plethora of problems involving adhesion and indentation on soft surfaces, such as nanoparticle adhesion on cells, nanoindentation based characterization of soft solids, applications of adhesion-based soft lithography techniques, etc.

Corresponding author
Hide All
(1) Bico J.; Roman B. Elasto-capillarity: deforming an elastic structure with a liquid droplet J. Phys. Cond. Matt. 22, 493101. (2010)
(2) Das S.; Marchand A.; Andreotti B.; Snoeijer J. H. Elastic deformation due to tangential capillary forces. Phys. Fluid. 23, 072006. (2011)
(3) Marchand A.; Das S., Snoeijer J. H.; Andreotti B. Capillary pressure and contact line force on a soft solid. Phys. Rev. Lett. 108, 094301. (2012)
(4) Marchand A.; Das S., Snoeijer J. H.; Andreotti B. Contact angles on a soft solid: From Young’s law to Neumann’s law. Phys. Rev. Lett. 109, 236101. (2012)
(5) Chakrabarti A.; Chaudhury M. K. Direct measurement of the surface tension of a soft elastic hydrogel: Exploration of elastocapillary instability in adhesion. Langmuir 29, 6926. (2013)
(6) Jerison E. R.; Xu Y.; Wilen L. A.; Dufresne E. R. Deformation of an elastic substrate by a three-phase contact line. Phys. Rev. Lett. 106, 186103. (2011)
(7) Style R. W.; Boltyanskiy R.; Che Y.; Wettlaufer J. S.; Wilen L. A.; Dufresne E. R. Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses. Phys. Rev. Lett. 110, 066103. (2013)
(8) Pericet-Camara R.; Best A.; Butt H-J.; Bonaccurso E. Effect of capillary pressure and surface tension on the deformation of elastic surfaces by sessile liquid microdrops: An experimental investigation. Langmuir 24, 10565. (2008)
(9) Style R. W.; Hyland C.; Boltyanskiy R.; Wettlaufer J. S.; Dufresne E. R. Surface tension and contact with soft elastic solids. Nat. Commun. 4, 2778. (2013)
(10) Bhushan B. Adhesion and stiction: Mechanisms, measurement techniques, and methods for reduction. J. Vac. Sci. Tech. 21, 1071. (2003)
(11) Waghmare P. R.; Das S.; Mitra S. K. Drop deposition on under-liquid low energy surfaces. Soft Matt. 9, 7437. (2013)
(12) Orellana C. S.; Jaeger H. M. The role of surface tension in magnetorheological adhesion. Soft Matt. 9, 8519. (2013)
(13) De Volder M.; Hart A. J.; Engineering hierarchical nanostructures by elastocapillary self-assembly. Angew. Chem. Int. Ed. 52, 2412. (2013)
(14) Tawfick S.; Zhao Z.; Maschmann M.; Brieland-Shoultz A.; De Volder M.; Baur J. W.; Lu W.; Hart A. J. Mechanics of capillary forming of aligned carbon nanotube assemblies. Langmuir 29, 5190. (2013)
(15) Style R. W.; Che Y.; Park S. J.; Weon B. M.; Je J. H.; Hyland C.; German G. K.; Power M. P.; Wilen L. A.; Wettlaufer J. S.; Dufresne E. R. Patterning droplets with durotaxis. Proc. Nat. Acad. Sci. USA 110, 12541. (2013)
(16) Douezan S.; Dumond J.; and Brochard-Wyart F. Wetting transitions of cellular aggregates induced by substrate rigidity. Soft Matt. 8, 4578. (2012)
(17) Chaudhury M. K.; Chakrabarti A.; Daniel S. Generation of motion of drops with interfacial contact. Langmuir, DOI: 10.1021/la504925u. (2015)
(18) Chakrabarti A.; Chaudhury M. K. Elastocapillary interaction of particles on the surfaces of ultrasoft gels: A novel route to study self-assembly and soft lubrication. Langmuir 30, 4684. (2014)
(19) Weijs J. H.; Snoeijer J. H.; Andreotti B. Capillarity of soft amorphous solids: A microscopic model for surface stress. Phys. Rev. E. 89, 042408. (2014)
(20) Weijs J. H.; Snoeijer J. H.; Andreotti B. Elasto-capillarity at the nanoscale: on the coupling between elasticity and surface energy in soft solids. Soft Matt. 9, 8494. (2013)
(21) Shuttleworth R. The surface tension of solids. Proc. Roy. Soc., London Sect. A 63, 444. (1950)
(22) De Jong W. H.; Borm P. J. A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine 8, 3406. (2008)
(23) Harush-Frenkel O.; Altschuler Y.; Benita S. Nanoparticle-cell interactions: drug delivery implications. Crit. Rev. Ther. Drug Carr. Sys. 25, 485. (2008)
(24) Lin D. C.; Dimitriadis E. K.; Horkay F. Advances in the mechanical characterization of soft materials by nanoindentation. Recent Res. Dev. Biophys. 5, 333. (2006)
(25) Poon B.; Rittel D.; Ravichandran G. An analysis of nanoindentation in linearly elastic solids. Int. J. Solid Struc. 45, 6018. (2008)
(26) Poon B.; Rittel D.; Ravichandran G. An analysis of nanoindentation in elasto-plastic solids. Int. J. Solid Struc. 45, 6399. (2008)
(27) Chen K-L.; Cao Y-P.; Zhang M-G.; Feng X-Q. Indentation-triggered pattern transformation in hyperelastic soft cellular solids. C. R. Mecanique 342, 292. (2014)
(28) Mukherjee R.; Sharma A.; Gonuguntla M.; Patil G. K. Adhesive force assisted imprinting of soft solid polymer films by flexible foils. J. Nanosci. Nanotechnol. 8, 3406. (2008)
(29) Karpitschka S.; Das S.; van Gorcum M.; Perrin H.; Andreotti B.; Snoeijer J. H. Droplets move over viscoelastic substrates by surfing a ridge. Nat. Commun. (Accepted for Publication).
(30) Lubbers L. A.; Weijs J. H.; Botto L.; Das S.; Andreotti B.; and Snoeijer J. H. Drops on soft solids: free energy and double transition of contact angles. J. Fluid Mech. 747, R1. (2014)
(31) Hui C-Y.; Jagota A. Deformation near a liquid contact line on an elastic substrate. Proc. Roy. Soc. A 470, 20140085. (2014)
(32) Nadermann N.; Hui C.-Y.; and Jagota A. Solid surface tension measured by a liquid drop under a solid film. Proc. Natl. Acad. Sci. USA 110, 10541. (2013)
(33) Hui C-Y.; Liu T.; Salez T.; Raphael E.; Jagota A. Indentation of a rigid sphere into an elastic substrate with surface tension and adhesion. Proc. Roy. Soc. A 471, 20140727. (2015)
(34) Xu X.; Jagota A.; Hui C-Y. Effects of surface tension on the adhesive contact of a rigid sphere to a compliant substrate. Soft Matt. 10, 4625. (2014)
(35) Liu T.; Jagota A.; Hui C-Y. Adhesive contact of a rigid circular cylinder to a soft elastic substrate – the role of surface tension. Soft Matt. 11, 3844. (2015)
(36) Garrett T. G.; Bhakoo M.; Zhang Z. Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci. 18, 1049 (2008).
(37) Kirschner C. M.; Brennan A. B. Bio-inspired antifouling strategies. Ann. Rev. Mater. Res. 42, 211 (2012).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Advances
  • ISSN: -
  • EISSN: 2059-8521
  • URL: /core/journals/mrs-advances
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 12 *
Loading metrics...

Abstract views

Total abstract views: 242 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 16th January 2018. This data will be updated every 24 hours.