Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T08:00:04.369Z Has data issue: false hasContentIssue false

A snapshot review on exciton engineering in deformed 2D materials

Published online by Cambridge University Press:  24 September 2020

Juyoung Leem*
Affiliation:
Department of Mechanical Engineering, Stanford University, Stanford, California94305, USA. TomKat Center for Sustainable Energy, Stanford University, Stanford, California94305, USA.
*
Corresponding author: J. Leem (jleem@stanford.edu)
Get access

Abstract

Most optoelectronic characteristics of two-dimensional (2D) materials are associated with excitonic effects. Excitonic effects in 2D material have been intensively investigated, and various efforts to engineer exciton behavior in 2D materials have been reported for advanced nanophotonic and optoelectronic applications. Excitons in 2D semiconductors can be controlled by external stimuli, including mechanical, electrical, thermal, and magnetic stimuli. Mechanical stimuli applied to a 2D material can generate uniform or non-uniform deformation and strain gradient in the 2D lattice, which creates a strain-induced bandgap energy gradient in the 2D material. In an inhomogeneous bandgap energy gradient generated by a non-uniform strain gradient, excitons drift across the energy gradient. Exciton engineering in deformed 2D materials aims to control exciton movement by mechanical strain. In this snapshot review, we focus on exciton engineering in a mechanically deformed 2D material and their potential towards advanced optoelectronic and photonic applications.

Type
Review Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mak, K.F., He, K., Lee, C., Lee, G.H., Hone, J., Heinz, T.F., and Shan, J., Nat. Mater. 12, 207 (2013).10.1038/nmat3505CrossRefGoogle Scholar
Ross, J.S., Wu, S., Yu, H., Ghimire, N.J., Jones, A.M., Aivazian, G., Yan, J., Mandrus, D.G., Xiao, D., Yao, W., and Xu, X., Nat. Commun. 4, 1 (2013).10.1038/ncomms2498CrossRefGoogle Scholar
Seyler, K.L., Schaibley, J.R., Gong, P., Rivera, P., Jones, A.M., Wu, S., Yan, J., Mandrus, D.G., Yao, W., and Xu, X., Nat. Nanotechnol. 10, 407 (2015).10.1038/nnano.2015.73CrossRefGoogle Scholar
Chernikov, A., Van Der Zande, A.M., Hill, H.M., Rigosi, A.F., Velauthapillai, A., Hone, J., and Heinz, T.F., Phys. Rev. Lett. 115, 126802 (2015).10.1103/PhysRevLett.115.126802CrossRefGoogle Scholar
Sie, E.J., McLver, J.W., Lee, Y.H., Fu, L., Kong, J., and Gedik, N., Nat. Mater. 14, 290 (2015).10.1038/nmat4156CrossRefGoogle Scholar
Aivazian, G., Gong, Z., Jones, A.M., Chu, R.L., Yan, J., Mandrus, D.G., Zhang, C., Cobden, D., Yao, W., and Xu, X., Nat. Phys. 11, 148 (2015).10.1038/nphys3201CrossRefGoogle Scholar
Srivastava, A., Sidler, M., Allain, A. V., Lembke, D.S., Kis, A., and A. Imamoʇlu, Nat. Phys. 11, 141 (2015).10.1038/nphys3203CrossRefGoogle Scholar
Macneill, D., Heikes, C., Mak, K.F., Anderson, Z., Kormányos, A., Zólyomi, V., Park, J., and Ralph, D.C., Phys. Rev. Lett. 114, 037401 (2015).10.1103/PhysRevLett.114.037401CrossRefGoogle Scholar
Li, Y., Ludwig, J., Low, T., Chernikov, A., Cui, X., Arefe, G., Kim, Y.D., Van Der Zande, A.M., Rigosi, A., Hill, H.M., Kim, S.H., Hone, J., Li, Z., Smirnov, D., and Heinz, T.F., Phys. Rev. Lett. 113, 266804 (2014).10.1103/PhysRevLett.113.266804CrossRefGoogle Scholar
Ieong, M., Doris, B., Kedzierski, J., Rim, K., and Yang, M., Science (80-.). 306, 2057 (2004).10.1126/science.1100731CrossRefGoogle Scholar
Mak, K.F., Lee, C., Hone, J., Shan, J., and Heinz, T.F., Phys. Rev. Lett. 105, 136805 (2010).10.1103/PhysRevLett.105.136805CrossRefGoogle Scholar
Lee, C., Yan, H., Brus, L.E., Heinz, T.F., Hone, J., and Ryu, S., ACS Nano 4, 2695 (2010).10.1021/nn1003937CrossRefGoogle Scholar
Bertolazzi, S., Brivio, J., and Kis, A., ACS Nano 5, 9703 (2011).10.1021/nn203879fCrossRefGoogle Scholar
Peelaers, H. and Van De Walle, C.G., Phys. Rev. B - Condens. Matter Mater. Phys. 86, 241401 (2012).10.1103/PhysRevB.86.241401CrossRefGoogle Scholar
Yun, W.S., Han, S.W., Hong, S.C., Kim, I.G., and Lee, J.D., Phys. Rev. B - Condens. Matter Mater. Phys. 85, 033305 (2012).10.1103/PhysRevB.85.033305CrossRefGoogle Scholar
Horzum, S., Sahin, H., Cahangirov, S., Cudazzo, P., Rubio, A., Serin, T., and Peeters, F.M., Phys. Rev. B - Condens. Matter Mater. Phys. 87, 125415 (2013).10.1103/PhysRevB.87.125415CrossRefGoogle Scholar
Shi, H., Pan, H., Zhang, Y.W., and Yakobson, B.I., Phys. Rev. B - Condens. Matter Mater. Phys. 87, 155304 (2013).10.1103/PhysRevB.87.155304CrossRefGoogle Scholar
Scalise, E., Houssa, M., Pourtois, G., Afanas'ev, V. V., and Stesmans, A., Phys. E Low-Dimensional Syst. Nanostructures 56, 416 (2014).10.1016/j.physe.2012.07.029CrossRefGoogle Scholar
Chang, C.H., Fan, X., Lin, S.H., and Kuo, J.L., Phys. Rev. B - Condens. Matter Mater. Phys. 88, 195420 (2013).10.1103/PhysRevB.88.195420CrossRefGoogle Scholar
Li, T., Phys. Rev. B - Condens. Matter Mater. Phys. 85, 235407 (2012).10.1103/PhysRevB.85.235407CrossRefGoogle Scholar
Johari, P. and Shenoy, V.B., ACS Nano 6, 5449 (2012).10.1021/nn301320rCrossRefGoogle Scholar
Scalise, E., Houssa, M., Pourtois, G., Afanas'ev, V., and Stesmans, A., Nano Res. 5, 43 (2012).10.1007/s12274-011-0183-0CrossRefGoogle Scholar
He, K., Poole, C., Mak, K.F., and Shan, J., Nano Lett. 13, 2931 (2013).10.1021/nl4013166CrossRefGoogle Scholar
Conley, H.J., Wang, B., Ziegler, J.I., Haglund, R.F., Pantelides, S.T., and Bolotin, K.I., Nano Lett. 13, 3626 (2013).10.1021/nl4014748CrossRefGoogle Scholar
Polland, H.J., Leo, K., Rother, K., Ploog, K., Feldmann, J., Peter, G., Göbel, E.O., Fujiwara, K., Nakayama, T., and Ohta, Y., Phys. Rev. B 38, 7635 (1988).10.1103/PhysRevB.38.7635CrossRefGoogle Scholar
Klar, T.A., Franzl, T., Rogach, A.L., and Feldmann, J., Adv. Mater. 17, 769 (2005).10.1002/adma.200401675CrossRefGoogle Scholar
Schmidt, R., Niehues, I., Schneider, R., Drüppel, M., Deilmann, T., Rohlfing, M., De Vasconcellos, S.M., Castellanos-Gomez, A., and Bratschitsch, R., 2D Mater. 3, 021011 (2016).10.1088/2053-1583/3/2/021011CrossRefGoogle Scholar
Plechinger, G., Castellanos-Gomez, A., Buscema, M., Van Der Zant, H.S.J., Steele, G.A., Kuc, A., Heine, T., Schüller, C., and Korn, T., 2D Mater. 2, 015006 (2015).10.1088/2053-1583/2/1/015006CrossRefGoogle Scholar
Frisenda, R., Drüppel, M., Schmidt, R., Michaelis de Vasconcellos, S., Perez de Lara, D., Bratschitsch, R., Rohlfing, M., and Castellanos-Gomez, A., Npj 2D Mater. Appl. 1, 10 (2017).10.1038/s41699-017-0013-7CrossRefGoogle Scholar
Hui, Y.Y., Liu, X., Jie, W., Chan, N.Y., Hao, J., Te Hsu, Y., Li, L.J., Guo, W., and Lau, S.P., ACS Nano 7, 7126 (2013).10.1021/nn4024834CrossRefGoogle Scholar
Li, Z., Lv, Y., Ren, L., Li, J., Kong, L., Zeng, Y., Tao, Q., Wu, R., Ma, H., Zhao, B., Wang, D., Dang, W., Chen, K., Liao, L., Duan, X., Duan, X., and Liu, Y., Nat. Commun. 11, 1 (2020).Google Scholar
Mei, H., Landis, C.M., and Huang, R., Mech. Mater. 43, 627 (2011).10.1016/j.mechmat.2011.08.003CrossRefGoogle Scholar
Wang, Q. and Zhao, X., Sci. Rep. 5, 1 (2015).Google Scholar
Brennan, C.J., Nguyen, J., Yu, E.T., and Lu, N., Adv. Mater. Interfaces 2, 1500176 (2015).10.1002/admi.201500176CrossRefGoogle Scholar
Wang, Q. and Zhao, X., MRS Bull. 41, 115 (2016).10.1557/mrs.2015.338CrossRefGoogle Scholar
Feng, J., Qian, X., Huang, C.W., and Li, J., Nat. Photonics 6, 866 (2012).10.1038/nphoton.2012.285CrossRefGoogle Scholar
Castellanos-Gomez, A., Roldán, R., Cappelluti, E., Buscema, M., Guinea, F., van der Zant, H.S.J., and Steele, G.A., Nano Lett. 13, 5361 (2013).10.1021/nl402875mCrossRefGoogle Scholar
Yang, S., Wang, C., Sahin, H., Chen, H., Li, Y., Li, S.S., Suslu, A., Peeters, F.M., Liu, Q., Li, J., and Tongay, S., Nano Lett. 15, 1660 (2015).10.1021/nl504276uCrossRefGoogle Scholar
Dhakal, K.P., Roy, S., Jang, H., Chen, X., Yun, W.S., Kim, H., Lee, J., Kim, J., and Ahn, J.H., Chem. Mater. 29, 5124 (2017).10.1021/acs.chemmater.7b00453CrossRefGoogle Scholar
Wang, Y., Yao, S., Liao, P., Jin, S., Wang, Q., Kim, M.J., Cheng, G.J., and Wu, W., Adv. Mater. 2002342 (2020).Google Scholar
Vella, D., Bico, J., Boudaoud, A., Roman, B., and Reis, P.M., Proc. Natl. Acad. Sci. U. S. A. 106, 10901 (2009).CrossRefGoogle Scholar
Zhang, Q. and Yin, J., J. Mech. Phys. Solids 118, 40 (2018).10.1016/j.jmps.2018.05.009CrossRefGoogle Scholar
Wang, M.C., Chun, S., Han, R.S., Ashraf, A., Kang, P., and Nam, S., Nano Lett. 15, 1829 (2015).10.1021/nl504612yCrossRefGoogle Scholar
Lee, W.-K., Kang, J., Chen, K.-S., Engel, C.J., Jung, W.-B., Rhee, D., Hersam, M.C., and Odom, T.W., Nano Lett. 16, 7121 (2016).CrossRefGoogle Scholar
Deng, S., Rhee, D., Lee, W.K., Che, S., Keisham, B., Berry, V., and Odom, T.W., Nano Lett. 19, 5640 (2019).10.1021/acs.nanolett.9b02178CrossRefGoogle Scholar
Wang, M.C., Leem, J., Kang, P., Choi, J., Knapp, P., Yong, K., and Nam, S., 2D Mater. 4, 022002 (2017).10.1088/2053-1583/aa62e8CrossRefGoogle Scholar
Chen, P.-Y., Liu, M., Wang, Z., Hurt, R.H., and Wong, I.Y., Adv. Mater. 29, 1605096 (2017).CrossRefGoogle Scholar
Choi, J., Kim, H.J., Wang, M.C., Leem, J., King, W.P., and Nam, S., Nano Lett. 15, 4525 (2015).CrossRefGoogle Scholar
Branny, A., Kumar, S., Proux, R., and Gerardot, B.D., Nat. Commun. 8, 1 (2017).CrossRefGoogle Scholar
Li, H., Contryman, A.W., Qian, X., Ardakani, S.M., Gong, Y., Wang, X., Weisse, J.M., Lee, C.H., Zhao, J., Ajayan, P.M., Li, J., Manoharan, H.C., and Zheng, X., Nat. Commun. 6, 7381 (2015).CrossRefGoogle Scholar
Pacakova, B., Verhagen, T., Bousa, M., Hübner, U., Vejpravova, J., Kalbac, M., and Frank, O., Sci. Rep. 7, 1 (2017).CrossRefGoogle Scholar
Zhang, Y., Heiranian, M., Janicek, B., Budrikis, Z., Zapperi, S., Huang, P.Y., Johnson, H.T., Aluru, N.R., Lyding, J.W., and Mason, N., Nano Lett. 18, 2098 (2018).CrossRefGoogle Scholar
Castellanos-Gomez, A., Poot, M., Steele, G.A., Van Der Zant, H.S.J., Agraït, N., and Rubio-Bollinger, G., Adv. Mater. 24, 772 (2012).CrossRefGoogle Scholar
Harats, M.G., Kirchhof, J.N., Qiao, M., Greben, K., and Bolotin, K.I., Nat. Photonics 14, 324 (2020).10.1038/s41566-019-0581-5CrossRefGoogle Scholar
Shin, B.G., Han, G.H., Yun, S.J., Oh, H.M., Bae, J.J., Song, Y.J., Park, C.-Y., and Lee, Y.H., Adv. Mater. 28, 9378 (2016).CrossRefGoogle ScholarPubMed
Blundo, E., Felici, M., Yildirim, T., Pettinari, G., Tedeschi, D., Miriametro, A., Liu, B., Ma, W., Lu, Y., and Polimeni, A., Phys. Rev. Res. 2, 012024 (2020).CrossRefGoogle Scholar
Zhang, D., Gan, L., Zhang, J., Zhang, R., Wang, Z., Feng, J., Sun, H., and Ning, C.Z., ACS Nano 14, 6931 (2020).10.1021/acsnano.0c01337CrossRefGoogle Scholar
Tyurnina, A. V., Bandurin, D.A., Khestanova, E., Kravets, V.G., Koperski, M., Guinea, F., Grigorenko, A.N., Geim, A.K., and Grigorieva, I. V., ACS Photonics 6, 516 (2019).10.1021/acsphotonics.8b01497CrossRefGoogle Scholar
Deng, S., Che, S., Debbarma, R., and Berry, V., Nanoscale 11, 504 (2019).CrossRefGoogle Scholar
San-Jose, P., Parente, V., Guinea, F., Roldán, R., and Prada, E., Phys. Rev. X 6, 031046 (2016).Google Scholar
De Sanctis, A., Amit, I., Hepplestone, S.P., Craciun, M.F., and Russo, S., Nat. Commun. 9, 1 (2018).CrossRefGoogle Scholar
Leem, J., Lee, Y., Wang, M.C., Kim, J.M., Mun, J., Haque, M.F., Kang, S.-W., and Nam, S., 2D Mater. 6, 044001 (2019).CrossRefGoogle Scholar