Skip to main content Accessibility help
×
×
Home

Temperature and Phase Transition Sensing in Liquids with Fluorescent Probes

  • I. Shishkin (a1) (a2), T. Alon (a1), R. Dagan (a1) and P. Ginzburg (a1) (a2)

Abstract

Local environment of fluorescent dyes could strongly affects emission dynamics of the latter. In particular, both signal intensities and emission lifetimes are highly sensitive to solvent temperatures. Here, temperature-dependent behavior Rhodamine B fluorescence in water and ethanol solutions was experimentally investigated. Phase transition point between liquid water and ice was shown to have a dramatic impact on both in intensity (30-fold drop) and in lifetime (from 2.68 ns down to 0.13 ns) of the dye luminescence along with the shift of spectral maxima from 590 to 625 nm. At the same time, use of ethanol as solvent does not lead to any similar behavior. The reported results and approaches enable further investigations of dye-solvent interactions and studies of physical properties at phase transition points.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Temperature and Phase Transition Sensing in Liquids with Fluorescent Probes
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Temperature and Phase Transition Sensing in Liquids with Fluorescent Probes
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Temperature and Phase Transition Sensing in Liquids with Fluorescent Probes
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
[1] Zhou, H., Sharma, M., Berezin, O., Zuckerman, D. and Berezin, M. Y., ChemPhysChem, 17, 2736 (2016).
[2] Zohar, O., Ikeda, M., Shinagawa, H., Inoue, H., Nakamura, H., Elbaum, D., Alkon, D. L. and Yoshioka, T., Biophys. J., 74, 8289 (1998).
[3] Ebert, S., Travis, K., Lincoln, B. and Guck, J., Opt. Express, 15, 1549315499 (2007).
[4] Schaerli, Y., Wootton, R. C., Robinson, T., Stein, V., Dunsby, C., Neil, M. A. A., French, P. M. W., DeMello, A. J., Abell, C. and Hollfelder, F., Anal. Chem., 81, 302306 (2009).
[5] Ross, D., Gaitan, M. and Locascio, L. E., Anal. Chem., 73, 41174123 (2001).
[6] Benninger, R., Hofmann, O., McGinty, J., Requejo-Isidro, J., Munro, I., Neil, M., Demello, A. and French, P., Opt. Express, 13, 62756285 (2005).
[7] Müller, C. B., Weiss, K., Loman, A., Enderlein, J. and Richtering, W., Lab Chip, 9, 1248–53 (2009).
[8] Bennet, M. A., Richardson, P. R., Arlt, J., McCarthy, A., Buller, G. S. and Jones, A. C., Lab Chip, 11, 3821–8 (2011).
[9] Benninger, R. K. P., Y. Koç, , Hofmann, O., Requejo-Isidro, J., Neil, M. A. A., French, P. M. W. and A. J. DeMello, , Anal. Chem., 78, 22722278 (2006).
[10] Haro-González, P., Martínez-Maestro, L., Martín, I. R., García-Solé, J. and Jaque, D., Small, 8, 26522658 (2012).
[11] Yamaguchi, A., Namekawa, M., Itoh, T. and Teramae, N., Anal. Sci., 28, 1065–70 (2012).
[12] Someya, Y. and Yui, H., Anal. Chem., 82, 54705476 (2010).
[13] Wohl, C. J., Kiefer, J. M., Petrosky, B. J., Tiemsin, P. I., Lowe, K. T., Maisto, P. M. F. and Danehy, P. M., ACS Appl. Mater. Interfaces, 7, 2071420725 (2015).
[14] Gallery, J., Gouterman, M., Callis, J., Khalil, G., McLachlan, B. and Bell, J., Rev. Sci. Instrum., 65, 712720 (1994).
[15] Johann, R. M., AIP Adv., 5, 077175 (2015).
[16] Chauhan, V. M., Hopper, R. H., Ali, S. Z., King, E. M., Udrea, F., Oxley, C. H. and Aylott, J. W., Sensors Actuators, B Chem., 192, 126133, (2014).
[17] Duong, H. D. and Rhee, J. I., Sensors Actuators, B Chem., 124, 1823 (2007).
[18] Townsend, P. D., Maghrabi, M. and Yang, B., Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 191, 767771 (2002).
[19] Townsend, P. D., Yang, B., Wang, Y., Rev. Mex. Fis. 54, 2938 (2008).
[20] Subramanian, R., Patterson, L. K. and Levanon, H., Chem. Phys. Lett., 93, 578581 (1982).
[21] Antipov, A., Bell, M., Yasar, M., Mitin, V., Scharmach, W., Swihart, M., Verevkin, A. and Sergeev, A., Nanoscale Res. Lett., 6, 142 (2011).
[22] Maksimov, E. G., Tsoraev, G. V., Paschenko, V. Z. and Rubin, A. B., Dokl. Biochem. Biophys., 443, 8690 (2012).
[23] Drexhage, K. H. H., Res, J.. Natl. Bur. Stand. Sect. A Phys. Chem., 80A, 421 (1976).
[24] Samy, R., Glawdel, T. and Ren, C. L., Measurement, 80, 41174123 (2008).
[25] Arbeloa, F. L., Ojeda, P. R. and Arbeloa, I. L., J. Lumin., 44,105112 (1989).
[26] Arbeloa, F. L., Ojeda, P. R. and Arbeloa, I. L., Chem. Phys. Lett., 148, 253258 (1988).
[27] Kemnitz, K. and Yoshihara, K., J. Phys. Chem., 95, 60956104 (1991).
[28] Lakowicz, J. R., Principles of Fluorescence Spectroscopy , 3 rd ed. (Springer, 2006).
[29] Choi, S., Bouffard, J. and Kim, Y., Chem. Sci., 5, 751755 (2014).
[30] Setiawan, D., Kazaryan, A., Martoprawiro, M. A. and Filatov, M., Phys. Chem. Chem. Phys., 12, 1123811244 (2010).
[31] Würthner, F., Kaiser, T. E. and Saha-Mӧller, C. R., Angew. Chemie - Int. Ed., 50, 33763410 (2011).
[32] Kristoffersen, A. S., Erga, S. R., Hamre, B. and Frette, Ø., J. Fluoresc., 24, 10151024 (2014).
[33] Boens, N. N., Qin, W., Basarić, N., Hofkens, J., Ameloot, M., Pouget, J., Lefèvre, J.-P., Valeur, B., Gratton, E., vandeVen, M., Silva, N. D., Engelborghs, Y., Willaert, K., Sillen, A., Rumbles, G., Phillips, D., Visser, A. J. W. G., van Hoek, A., Lakowicz, J. R., Malak, H., Gryczynski, I., Szabo, A. G., Krajcarski, D. T., Tamai, N., Miura, A., Basaric, N., Hasselt, U., Lefe, B. D, J., Cedex, C., Building, I. I., Van Hoek, A., Basari, N. and Wilson, P., Anal. Chem., 79, 21372149 (2007).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Advances
  • ISSN: -
  • EISSN: 2059-8521
  • URL: /core/journals/mrs-advances
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed