Skip to main content Accessibility help
×
Home

Three-Dimensional Continuum Dislocation Dynamics Simulations of Dislocation Structure Evolution in Bending of a Micro-Beam

  • Alireza Ebrahimi (a1) and Thomas Hochrainer (a1)

Abstract

A persistent challenge in multi-scale modeling of materials is the prediction of plastic materials behavior based on the evolution of the dislocation state. An important step towards a dislocation based continuum description was recently achieved with the so called continuum dislocation dynamics (CDD). CDD captures the kinematics of moving curved dislocations in flux-type evolution equations for dislocation density variables, coupled to the stress field via average dislocation velocity-laws based on the Peach-Koehler force. The lowest order closure of CDD employs three internal variables per slip system, namely the total dislocation density, the classical dislocation density tensor and a so called curvature density.

In the current work we present a three-dimensional implementation of the lowest order CDD theory as a materials sub-routine for Abaqus® in conjunction with the crystal plasticity framework DAMASK. We simulate bending of a micro-beam and qualitatively compare the plastic shear and the dislocation distribution on a given slip system to results from the literature. The CDD simulations reproduce a zone of reduced plastic shear close to the surfaces and dislocation pile-ups towards the center of the beam, which have been similarly observed in discrete dislocation simulations.

Copyright

Corresponding author

*Contact e-mail: ebrahimi@uni-bremen.de

References

Hide All
1. Kröner, E. and Rieder, G., Z. Phys. 145, 424429 (1956).
2. Nye, J. F., Acta Metall. 1(2), 153162 (1953).
3. Mura, T., Philos. Mag. 8(89), 843857 (1963).
4. Acharya, A. and Roy, A., J. Mech. Phys. Solids 54(8), 16871710 (2006).
5. Sedlacek, R., Kratochvil, J., Werner, E., Philos. Mag. 83 (31-34), 37353752 (2003).
6. Hochrainer, T., Zaiser, M., Gumbsch, P., Philos. Mag. 87, 12611282 (2007).
7. Hochrainer, T., Sandfeld, S., Zaiser, M., Gumbsch, P., J. Mech. Phys. Solids, 63, 167178 (2014)
8. Hochrainer, T., Philos. Mag, 95, 13211367 (2015)
9. Ebrahimi, A., Monavari, M., Hochrainer, T., MRS Proceedings, 1651, mrsf13-1651-kk06-05T (2014).
10. Sandfeld, S. and Po, G., Model. Simul. Mater. Sci. Eng. 23, p. 085003 (2015)
11. Roters, F., Eisenlohr, P., Kords, C., Tjahjanto, D.D., Diehl, M., Raabe, D., Procedia IUTAM 3, 310 (2012).
12. Mura, T., Micromechanics of defects in solids (Kluwer Academic Publisher Group, Dordrecht, The Netherlands, 1982)
13. Motz, C., Weygand, D., Senger, J., Gumbsch, P., Acta Mater., 56, 19421955R (2008).
14. Groma, I., Csikor, F. F., Zaiser, M., Acta Mater. 51, 12711281 (2003)
15. Hirth, J.P., Lothe, J., Theory of dislocations, (McGraw-Hill Book Comp, New York, 1968)
16. Sandfeld, S., Hochrainer, T., Zaiser, M., Gumbsch, P., Philos. Mag, 90, 132 (2010)
17. Sandfeld, S., Hochrainer, T., Zaiser, M., Gumbsch, P., J. Mater. Res., vol. 26, 623632(2011)

Keywords

Related content

Powered by UNSILO

Three-Dimensional Continuum Dislocation Dynamics Simulations of Dislocation Structure Evolution in Bending of a Micro-Beam

  • Alireza Ebrahimi (a1) and Thomas Hochrainer (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.