Skip to main content Accessibility help
×
Home

Transition from ductile to brittle failure of sodium silicate glasses: a numerical study

  • Gergely Molnár (a1), Patrick Ganster (a1), Anne Tanguy (a2), János Török (a3) and Guillaume Kermouche (a1)...

Abstract

Using molecular statics calculations, sodium silicate glasses are expanded in an isotropic manner to analyze the composition dependence of the mechanical response.

Increasing the amount of sodium makes the systems more ductile. The tensile strength is reduced and the final load bearing strain limit is increased.

Hydrostatic strain hardening appears in the ductile samples. To explain this phenomena, the density is coarse-grained to identify microscopic defects. In samples containing a significant amount of sodium, a large amount of nano-voids appear before reaching the maximum load bearing capacity. In high sodium content silicates these cracks may cause the hardening observed in the pressure results.

In samples with low sodium content, the failure is abrupt and only a large crack is observed. Increasing the amount of long term but weaker Na-O interactions, instead of the short range Si-O ones could explain the observed transition.

Copyright

Corresponding author

References

Hide All
1. Brückner, R., Journal of Non-Crystalline Solids 5, 123175 (1970).
2. Hermansen, C., Matsuoka, J., Yoshida, S., Yamazaki, H., Kato, Y. and Yue, Y., Journal of Non-Crystalline Solids 364, 4043 (2013).
3. Muralidharan, K, Simmons, J. H., Deymier, P. A. and Runge, K., Journal of Non-Crystalline Solids 351, 15321542 (2005).
4. Rountree, C. L., Prades, S., Bonamy, D., Bouchaud, E., Kalia, R. and Guillot, C., Journal of Alloys and Compounds 434435, 60–63 (2007).
5. Nomura, K., Chen, Y.-C., Weiqiang, W., Kalia, R. K., Nakano, A., Vashishta, P. and Yang, L. H., J. Phys. D: Appl. Phys. 42, 214011 (2009).
6. Chen, Y.-C., Nomura, K., Kalia, R. K., Nakano, A. and Vashishta, P., Physical Review Letters 103, 035501 (2009).
7. Gross, T. M. and Tomozawa, M., Journal of Applied Physics 104, 063529 (2008).
8. van Beest, B. W. H., Kramer, G. J., and van Santen, R. A., Physical Review Letters 64, 1955 (1990).
9. Yuan, X. and Cormack, A. N., Journal of Non-Crystalline Solids 283, 69 (2001).
10. Mantisi, B., Tanguy, A., Kermouche, G., and Barthel, E., The European Physical Journal B, 85 (2012),
11. Plimpton, S., Journal of Computational Physics 117, 1 (1995).
12. Fábián, M., Jóvári, P., Sváb, E., Mészáros, G., Proen, T. and Veress, E., Journal of Physics: Condensed Matter 824 19, 335209 (2007).
13. Emerson, J. F., Stallworth, P. E. and Bray, P. J., Journal of Non-Crystalline Solids 113, 830 (1989).
14. Zhao, Q., Guerette, M., Scannell, G. and Huang, L., Journal of Non-Crystalline Solids 358, 3418 (2012).
15. Theodorouand, D. and Suter, U. W., Macromolecules 19, 139 (1986).
16. Spaepen, F., Acta Metallurgica 25, 407 (1977).
17. Argon, A. S., Acta Metallurgica 27, 47 (1979).
18. Theodorouand, D. and Suter, U. W., Macromolecules 19, 139 (1986).

Keywords

Transition from ductile to brittle failure of sodium silicate glasses: a numerical study

  • Gergely Molnár (a1), Patrick Ganster (a1), Anne Tanguy (a2), János Török (a3) and Guillaume Kermouche (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed