Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T04:54:56.569Z Has data issue: false hasContentIssue false

Understanding the Enhanced Kinetics of Enzyme-Quantum Dot Constructs

Published online by Cambridge University Press:  28 December 2015

Joyce Breger
Affiliation:
Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375 American Society for Engineering Education, 1818 N Street NW, Suite 600 Washington, DC 20036
Scott Walper
Affiliation:
Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375
Mario Ancona
Affiliation:
Electronic Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375
Michael Stewart
Affiliation:
Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, DC 20375
Eunkeu Oh
Affiliation:
Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, DC 20375
Kimihiro Susumu
Affiliation:
Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, DC 20375
Igor Medintz*
Affiliation:
Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375
Get access

Abstract

Bio-inspired, hybrid architectures employing quantum dots (QDs) appended with functionally active biomolecules such as enzymes have the potential to be utilized in numerous applications. Some examples include nanosensors for medical diagnostics, chemical/biological threat detection, as well as “bio-factories” in complex industrial synthetic processes. The main advantage in creating these nanofactories is increased rates in catalysis and efficiency when enzymes are associated with nanoscaffolds, as shown in numerous studies. However, the mechanism for this enhancement remains elusive. Gaining a fundamental, mechanistic understanding of enzyme-QD nanostructures is important in the development of numerous device applications. In this work, we review an array of enzymes attached to QDs and generate a hypothesis in regards to the unique architecture of the enzyme-nanoparticle (NP) construct that leads to increases in catalysis. We highlight work with phosphotiresterase (PTE) attached to two distinctly sized QDs in neutralizing a simulant nerve agent, as well as in other enzyme systems.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Samanta, A., Walper, S. A., Susumu, K., Dwyer, C. L., Medintz, I. L., Nanoscale 2015, 7, 7603; S. Ding, A. A. Cargill, I. L. Medintz, J. C. Claussen, Current Opinion in Biotechnology 2015, 34, 242.Google Scholar
Breger, J. C., Sapsford, K. E., Ganek, J., Susumu, K., Stewart, M. H., Medintz, I. L., Acs Applied Materials & Interfaces 2014, 6, 11529.Google Scholar
Johnson, B. J., Algar, W. R., Malanoski, A. P., Ancona, M. G., Medintz, I. L., Nano Today 2014, 9, 102.Google Scholar
Susumu, K., Oh, E., Delehanty, J. B., Blanco-Canosa, J. B., Johnson, B. J., Jain, V., Hervey, W. J., Algar, W. R., Boeneman, K., Dawson, P. E., Medintz, I. L., Journal of the American Chemical Society 2011, 133, 9480.Google Scholar
Susumu, K., Oh, E., Delehanty, J. B., Pinaud, F., Gemmill, K. B., Walper, S., Breger, J., Schroeder, M. J., Stewart, M. H., Jain, V., Whitaker, C. M., Huston, A. L., Medintz, I. L., Chem. Mat. 2014, 26, 5327.Google Scholar
Claussen, J. C., Malanoski, A., Breger, J. C., Oh, E., Walper, S. A., Susumu, K., Goswami, R., Deschamps, J. R., Medintz, I. L., Journal of Physical Chemistry C 2015, 119, 2208.Google Scholar
Brown, C. W. III, Oh, E., Hastman, D. A. Jr., Walper, S. A., Susumu, K., Stewart, M. H., Deschamps, J. R., Medintz, I. L., Rsc Advances 2015, 5, 93089.CrossRefGoogle Scholar
Algar, W. R., Malonoski, A., Deschamps, J. R., Banco-Canosa, J. B., Susumu, K., Stewart, M. H., Johnson, B. J., Dawson, P. E., Medintz, I. L., Nano Letters 2012, 12, 3793.Google Scholar
Sapsford, K. E., Farrell, D., Sun, S., Rasooly, A., Mattoussi, H., Medintz, I. L., Sensors and Actuators B-Chemical 2009, 139, 13; J. B. Blanco-Canosa, M. Wu, K. Susumu, E. Petryayeva, T. L. Jennings, P. E. Dawson, W. R. Algar, I. L. Medintz, Coord. Chem. Rev. 2014, 263, 101; I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Nat. Mater. 2005, 4, 435.Google Scholar
Breger, J. C., Ancona, M. G., Walper, S. A., Oh, E., Susumu, K., Stewart, M. H., Deschamps, J. R., Medintz, I. L., Acs Nano 2015, 9, 8491.Google Scholar
Oh, E., Susumu, K., Goswami, R., Mattoussi, H., Langmuir 2010, 26, 7604.CrossRefGoogle Scholar
Tsai, P.-C., Fox, N., Bigley, A. N., Harvey, S. P., Barondeau, D. P., Raushel, F. M., Biochemistry 2012, 51, 6463.Google Scholar
Alves, N. J., Turner, K. B., Daniele, M. A., Oh, E., Medintz, I. L., Walper, S. A., Acs Applied Materials & Interfaces 2015, 7, 24963.Google Scholar