Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-rq46b Total loading time: 0.451 Render date: 2022-12-05T10:28:27.083Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Article contents

Condensation heat transfer on superhydrophobic surfaces

Published online by Cambridge University Press:  15 May 2013

Nenad Miljkovic
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA; nmiljkov@mit.edu
Evelyn N. Wang
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA; enwang@mit.edu
Get access

Abstract

Condensation is a phase change phenomenon often encountered in nature, as well as used in industry for applications including power generation, thermal management, desalination, and environmental control. For the past eight decades, researchers have focused on creating surfaces allowing condensed droplets to be easily removed by gravity for enhanced heat transfer performance. Recent advancements in nanofabrication have enabled increased control of surface structuring for the development of superhydrophobic surfaces with even higher droplet mobility and, in some cases, coalescence-induced droplet jumping. Here, we provide a review of new insights gained to tailor superhydrophobic surfaces for enhanced condensation heat transfer considering the role of surface structure, nucleation density, droplet morphology, and droplet dynamics. Furthermore, we identify challenges and new opportunities to advance these surfaces for broad implementation in thermofluidic systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Parker, A.R., Lawrence, C.R., Nature 414, 33 (2001).CrossRef
Zheng, Y.M., Bai, H., Huang, Z.B., Tian, X.L., Nie, F.Q., Zhao, Y., Zhai, J., Jiang, L., Nature 463, 640 (2010).CrossRef
Bhushan, B., Philos. Trans. R. Soc. London, Ser. A 367, 1445 (2009).CrossRef
Cheng, Y.T., Rodak, D.E., Appl. Phys. Lett. 86 (2005).
Mockenhaupt, B., Ensikat, H.J., Spaeth, M., Barthlott, W., Langmuir 24, 13591 (2008).CrossRef
Beer, J.M., Prog. Energy Combust. Sci. 33, 107 (2007).CrossRef
Peters, T.B., McCarthy, M., Allison, J., Dominguez-Espinosa, F.A., Jenicek, D., Kariya, H.A., Staats, W.L., Brisson, J.G., Lang, J.H., Wang, E.N., IEEE Trans. Compon. Packag. Manuf. Technol. 2, 1637 (2012).CrossRef
Khawaji, A.D., Kutubkhanah, I.K., Wie, J.M., Desalination 221, 47 (2008).CrossRef
Humplik, T., Lee, J., O’Hern, S.C., Fellman, B.A., Baig, M.A., Hassan, S.F., Atieh, M.A., Rahman, F., Laoui, T., Karnik, R., Wang, E.N., Nanotechnology 22, 292001 (2011).CrossRef
Perez-Lombard, L., Ortiz, J., Pout, C., Energy Build 40, 394 (2008).CrossRef
Li, B.Z., Yao, R.M., Renewable Energy 34, 1994 (2009).CrossRef
von Elsner, B., Briassoulis, D., Waaijenberg, D., Mistriotis, A., von Zabeltitz, C., Gratraud, J., Russo, G., Suay-Cortes, R., J. Agric. Eng. Res. 75, 1 (2000).CrossRef
Kaschiev, D., Nucleation: Basic Theory With Applications (Butterworth-Heinemann, Oxford, 2000).Google Scholar
Nusselt, W.Z., Z. Ver. Dtsch. Ing. 60, 541 (1916).
Marto, P.J., Looney, D.J., Rose, J.W., Wanniarachchi, A.S., Int. J. Heat Mass Trans. 29, 1109 (1986).CrossRef
Bonner, R.W.I., in Proceedings of the International Heat Transfer Conference (ASME, Washington, DC, 2010).Google Scholar
Vemuri, S., Kim, K.J., Wood, B.D., Govindaraju, S., Bell, T.W., Appl. Therm. Eng. 26, 421 (2006).CrossRef
Vemuri, S., Kim, K.J., Int. J. Heat Mass Trans. 49, 649 (2006).CrossRef
Das, A.K., Kilty, H.P., Marto, P.J., Andeen, G.B., Kumar, A., J. Heat Trans. 122, 278 (2000).CrossRef
Erb, R.A., Thelen, E., Ind. Eng. Chem. 57, 49 (1965).CrossRef
Wilkins, D.G., Bromley, L.A., Read, S.M., AlChE J. 19, 119 (1973).CrossRef
Woodruff, D.W., Westwater, J.W., Int. J. Heat Mass Trans. 22, 629 (1979).CrossRef
Beysens, D., C.R. Phys. 7, 1082 (2006).CrossRef
Beysens, D., Steyer, A., Guenoun, P., Fritter, D., Knobler, C.M., Phase Transitions 31, 219 (1991).CrossRef
Fritter, D., Knobler, C.M., Beysens, D.A., Phys. Rev. A 43, 2858 (1991).CrossRef
Schmidt, E., Schurig, W., Sellschopp, W., Forsch. Ingenieurwes. 1, 53 (1930).CrossRef
Kim, H.Y., Lee, H.J., Kang, B.H., J. Colloid Interface Sci. 247, 372 (2002).CrossRef
Dimitrakopoulos, P., Higdon, J.J.L., J. Fluid Mech. 395, 181 (1999).CrossRef
Boreyko, J.B., Chen, C.H., Phys. Rev. Lett. 103, 184501 (2009).CrossRef
Rose, J.W., Proc. Inst. Mech. Eng., Part A: J. Power Eng. 216, 115 (2002).CrossRef
Sikarwar, B.S., Khandekar, S., Agrawal, S., Kumar, S., Muralidhar, K., Heat Trans. Eng. 33, 301 (2012).CrossRef
Lafuma, A., Quéré, D., Nat. Mater. 2, 457 (2003).CrossRef
Patankar, N.A., Soft Matter 6, 1613 (2010).CrossRef
Bocquet, L., Lauga, E., Nat. Mater. 10, 334 (2011).CrossRef
Kang, S.H., Wu, N., Grinthal, A., Aizenberg, J., Phys. Rev. Lett. 107, 177802 (2011).CrossRef
Young, T., Philos. Trans. R. Soc. London 95, 65 (1805).CrossRef
Wenzel, R.N., Ind. Eng. Chem. 28, 988 (1936).CrossRef
Cassie, A.B.D., Baxter, S., Trans. Faraday Soc. 40, 546 (1944).CrossRef
Gao, L.C., Fadeev, A.Y., McCarthy, T.J., MRS Bull. 33, 747 (2008).CrossRef
Quéré, D., Annu. Rev. Mater. Res. 38, 71 (2008).CrossRef
Dorrer, C., Ruhe, J., Soft Matter 5, 51 (2009).CrossRef
Roach, P., Shirtcliffe, N.J., Newton, M.I., Soft Matter 4, 224 (2008).CrossRef
Moulinet, S., Bartolo, D., Eur. Phys. J. E 24, 251 (2007).CrossRef
Narhe, R.D., Beysens, D.A., Europhys. Lett. 75, 98 (2006).CrossRef
Narhe, R.D., Beysens, D.A., Phys. Rev. Lett. 93, 076103 (2004).CrossRef
Narhe, R.D., Beysens, D.A., Langmuir 23, 6486 (2007).CrossRef
Miljkovic, N., Enright, R., Nam, Y., Lopez, K., Dou, N., Sack, J., Wang, E.N., Nano Lett. 13, 179 (2013).CrossRef
Dorrer, C., Ruhe, J., Langmuir 23, 3820 (2007).CrossRef
Wier, K.A., McCarthy, T.J., Langmuir 22, 2433 (2006).CrossRef
Chen, C.H., Cai, Q.J., Tsai, C.L., Chen, C.L., Xiong, G.Y., Yu, Y., Ren, Z., Appl. Phys. Lett. 90, 173108 (2007).CrossRef
Dorrer, C., Ruhe, J., Adv. Mater. 20, 159 (2008).CrossRef
Chen, X., Wu, J., Ma, R., Hua, M., Koratkar, N., Yao, S., Wang, Z., Adv. Funct. Mater. 21, 4617 (2011).CrossRef
Lau, K.K.S., Bico, J., Teo, K.B.K., Chhowalla, M., Amaratunga, G.A.J., Milne, W.I., McKinley, G.H., Gleason, K.K., Nano Lett. 3, 1701 (2003).CrossRef
Rykaczewski, K., Osborn, W.A., Chinn, J., Walker, M.L., Scott, J.H.J., Jones, W., Hao, C., Yaod, S., Wang, Z., Soft Matter 8, 8786 (2012).CrossRef
Enright, R., Miljkovic, N., Al-Obeidi, A., Thompson, C.V., Wang, E.N., Langmuir 40, 14424 (2012).CrossRef
Anderson, D.M., Gupta, M.K., Voevodin, A.A., Hunter, C.N., Putnam, S.A., Tsukruk, V.V., Fedorov, A.G., ACS Nano 6, 3262 (2012).CrossRef
Varanasi, K.K., Deng, T., in 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems 15 (Los Vegas, NV, 2010).Google Scholar
Varanasi, K.K., Hsu, M., Bhate, N., Yang, W.S., Deng, T., Appl. Phys. Lett. 95, 094101 (2009).CrossRef
Her, E.K., Ko, T.J., Lee, K.R., Oh, K.H., Moon, M.W., Nanoscale 4, 2900 (2012).CrossRef
Ji, S.M., Kim, I.Y., Kim, E.H., Jung, J.U., Kim, W.D., Lim, H.E., J. Korean Soc. Precis. Eng. 29, 19 (2012).CrossRef
Lee, A., Moon, M.W., Lim, H., Kim, W.D., Kim, H.Y., Langmuir 28, 10183 (2012).CrossRef
Thickett, S.C., Neto, C., Harris, A.T., Adv. Mater. 23, 3718 (2011).CrossRef
Yao, C.W., Garvin, T.P., Alvarado, J.L., Jacobi, A.M., Jones, B.G., Marsh, C.P., Appl. Phys. Lett. 101, 111605 (2012).CrossRef
Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., Whitesides, G.M., Chem. Rev. 105, 1103 (2005).CrossRef
Lopez, G.P., Biebuyck, H.A., Frisbie, C.D., Whitesides, G.M., Science 260, 647 (1993).CrossRef
Mandler, D., Turyan, I., Electroanalysis 8, 207 (1996).CrossRef
Miljkovic, N., Enright, R., Wang, E.N., ACS Nano 6, 1776 (2012).CrossRef
Rykaczewski, K., Langmuir 28, 7720 (2012).CrossRef
Kim, S., Kim, K.J., J. Heat Transfer 133, 081502 (2011).CrossRef
AbuOrabi, M., Int. J. Heat Mass Trans. 41, 81 (1998).CrossRef
Anand, S., Son, S.Y., Langmuir 26, 17100 (2010).CrossRef
Cao, L., Jones, A.K., Sikka, V.K., Wu, J.Z., Gao, D., Langmuir 25, 12444 (2009).CrossRef
Rose, J.W., Glicksman, L.R., Int. J. Heat Mass Trans. 16, 411 (1973).CrossRef
Narhe, R.D., Khandkar, M.D., Shelke, P.B., Limaye, A.V., Beysens, D.A., Phys. Rev. E 80, 031604 (2009).CrossRef
Dietz, C., Rykaczewski, K., Fedorov, A.G., Joshi, Y., Appl. Phys. Lett. 97, 033104 (2010).CrossRef
Miljkovic, N., Enright, R., Wang, E.N., presented at the3rd Micro/Nanoscale Heat & Mass Transfer International Conference (Atlanta, GA, 2012).Google Scholar
Nosonovsky, M., Bhushan, B., Ultramicroscopy 107, 969 (2007).CrossRef
McCarthy, M., Gerasopoulos, K., Enright, R., Culver, J.N., Ghodssi, R., Wang, E.N., Appl. Phys. Lett. 100, 1 (2012).CrossRef
Bhushan, B., Nosonovsky, M., Nano Lett. 7, 2633 (2007).
Bhushan, B., Jung, Y.C., ACS Nano 3, 4155 (2009).
Pokroy, B., Kang, S.H., Mahadevan, L., Aizenberg, J., Science 323, 237 (2009).CrossRef
Liu, T.Q., Sun, W., Sun, X.Y., Ai, H.R., Langmuir 26, 14835 (2010).CrossRef
Liu, T.Q., Sun, W., Sun, X.Y., Ai, H.R., Colloids Surf., A 414, 366 (2012).CrossRef
Miljkovic, N., Enright, R., Wang, E.N., J. Heat Transfer (2012), in press.
Feng, J., Pang, Y., Qin, Z., Ma, R., Yao, S., ACS Appl. Mater. Interfaces 4, 6618 (2012).CrossRef
Enright, R., Dou, N., Miljkovic, N., Nam, Y., Wang, E.N., presented at the3rd Micro/Nanoscale Heat & Mass Transfer International Conference (Atlanta, GA, 2012).Google Scholar
Dietz, C., Rykaczewski, K., Fedorov, A., Joshi, Y., J. Heat Transfer 132, 080904 (2010).CrossRef
Boreyko, J.B., Collier, P.C., ACS Nano 7, 1618 (2013)CrossRef
Rykaczewski, K., Scott, J.H.J., Rajauria, S., Chinn, J., Chinn, A.M., Jones, W., Soft Matter 7, 8749 (2011).CrossRef
Rykaczewski, K., Paxson, A.T., Anand, S., Chen, X., Wang, Z., Varanasi, K.K., Langmuir 29, 881 (2013).CrossRef
Rykaczewski, K., Chinn, J., Walker, M.L., Scott, J.H.J., Chinn, A., Jones, W., ACS Nano 5, 9746 (2011).CrossRef
Narhe, R.D., Gonzalez-Vinas, W., Beysens, D.A., Appl. Surf. Sci. 256, 4930 (2010).CrossRef
Torresin, D., Tiwari, M.K., Del Col, D., Poulikakos, D., Langmuir 29, 840 (2013).CrossRef
Feng, J., Qin, Z.Q., Yao, S.H., Langmuir 28, 6067 (2012).CrossRef
Zhang, X.T., Jin, M., Liu, Z.Y., Nishimoto, S., Saito, H., Murakami, T., Fujishima, A., Langmuir 22, 9477 (2006).CrossRef
Zhang, X.T., Jin, M., Liu, Z.Y., Tryk, D.A., Nishimoto, S., Murakami, T., Fujishima, A., J. Phys. Chem. C 111, 14521 (2007).CrossRef
He, M., Zhou, X., Zeng, X.P., Cui, D.P., Zhang, Q.L., Chen, J., Li, H.L., Wang, J.J., Cao, Z.X., Song, Y.L., Jiang, L., Soft Matter, 8, 6680 (2012).CrossRef
Nam, Y., Sharratt, S., Byon, C., Kim, S.J., Ju, Y.S., J. Microelectromech. Syst. 19, 581 (2010).CrossRef
Nam, Y., Sungtaek, Y., J. Adhes. Sci. Technol. 1 (2012).
Rose, J.W., Int. J. Heat Mass Trans. 10, 755 (1967).CrossRef
Boreyko, J.B., Zhao, Y.J., Chen, C.H., Appl. Phys. Lett. 99, 234105 (2011).CrossRef
Cheng, J., Vandadi, A., Chen, C.L., Appl. Phys. Lett. 101, 131909 (2012).CrossRef
Boreyko, J.B., Chen, C.H., Int. J. Heat Mass Transf. 61, 409 (2013).CrossRef
Ma, X.H., Zhou, X.D., Lan, Z., Li, Y.M., Zhang, Y., Int. J. Heat Mass Trans. 51, 1728 (2008).CrossRef
Rose, J.W., Int. J. Heat Mass Trans. 23, 539 (1980).CrossRef
Thiel, G.P., Lienhard, J.H., Int. J. Heat Mass Trans. 55, 5133 (2012).CrossRef
Barshilia, H.C., Chaudhary, A., Kumar, P., Manikandanath, N.T., Nanomaterials 2, 65 (2012).CrossRef
Azimi, G., Dhiman, R., Kwon, H.K., Paxson, A.T., Varanasi, K.K., Nat. Mater. (2013), doi: 10.1038/nmat3545.
Lafuma, A., Quéré, D., Europhys. Lett. 96, 56001 (2011).CrossRef
Wong, T.S., Kang, S.H., Tang, S.K.Y., Smythe, E.J., Hatton, B.D., Grinthal, A., Aizenberg, J., Nature 477, 443 (2011).CrossRef
Anand, S., Paxson, A.T., Dhiman, R., Smith, D.J., Varanasi, K.K., ACS Nano 6, 10122 (2012).CrossRef
Kim, P., Wong, T.S., Alvarenga, J., Kreder, M.J., Adorno-Martinez, W.E., Aizenberg, J., ACS Nano 6, 6569 (2012).CrossRef
Wilson, P.W., Lu, W., Xu, H., Kim, P., Kreder, M.J., Alvarenga, J., Aizenberg, J., Phys. Chem. Chem. Phys. 15, 581 (2013).CrossRef
Epstein, A.K., Wong, T.S., Belisle, R.A., Boggs, E.M., Aizenberg, J., Proc. Natl. Acad. Sci. U.S.A. 109, 13182 (2012).CrossRef
Smith, D.J., Dhiman, R., Anand, S., Reza-Garduno, E., Cohen, R.E., McKinley, G.H., Varanasi, K.K., Soft Matter 9, 1772 (2013).CrossRef
Tuteja, A., Choi, W.J., McKinley, G.H., Cohen, R.E., Rubner, M.F., MRS Bull. 33, 752 (2008).CrossRef
Deng, X., Mammen, L., Butt, H.J., Vollmer, D., Science 335, 67 (2012).CrossRef
Nishimoto, S., Bhushan, B., RSC Adv. 3, 671 (2013).CrossRef
Liu, X.J., Liang, Y.M., Zhou, F., Liu, W.M., Soft Matter 8, 2070 (2012).CrossRef
Stokes, D., Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-ESEM) (New York, Wiley, 2008).CrossRefGoogle Scholar
Stelmashenko, N.A., Craven, J.P., Donald, A.M., Terentjev, E.M., Thiel, B.L., J. Microsc. 204, 172 (2001).CrossRef
Rossi, M.P., Gogotsi, Y., Kornev, K.G., Langmuir 25, 2804 (2009).CrossRef
Miljkovic, N., Enright, R., Maroo, S.C., Cho, H.J., Wang, E.N., J. Heat Transfer 133, 080903 (2011).CrossRef
Miljkovic, N., Enright, R., Wang, E.N., J. Heat Transfer 134(8), 080902 (2012).CrossRef
Barkay, Z., Appl. Phys. Lett. 96, 183109 (2010).CrossRef
Bhushan, B., Jung, Y.C., J. Microsc. 229, 127 (2008).
Rykaczewski, K., Scott, J.H.J., ACS Nano 5, 5962 (2011).CrossRef
Rykaczewski, K., Scott, J.H.J., Fedorov, A.G., Appl. Phys. Lett. 98, 093106 (2011).CrossRef
Wiedemann, S., Plettl, A., Walther, P., Ziemann, P., Langmuir 29, 913 (2013).CrossRef
Rykaczewski, K., Landin, T., Walker, M.L., Scott, J.H.J., Varanasi, K.K., ACS Nano 6, 9326 (2012).CrossRef

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Condensation heat transfer on superhydrophobic surfaces
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Condensation heat transfer on superhydrophobic surfaces
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Condensation heat transfer on superhydrophobic surfaces
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *