Hostname: page-component-788cddb947-xdx58 Total loading time: 0 Render date: 2024-10-15T18:19:18.942Z Has data issue: false hasContentIssue false

Displays from Transparent Films of Natural Nanofibers

Published online by Cambridge University Press:  31 January 2011

Antonio Norio Nakagaito
Affiliation:
Department of Chemistry and Biotechnology, Graduate School of Engineering Tottori University, 4-101 Koyama-cho Minami, Tottori; Japan; tel. and fax 81(857) 31-5592; and e-mail nakagaito@rish.kyoto-u.ac.jp. (e-mail starting April 2010: norio.rm@gmail.com).
Masaya Nogi
Affiliation:
Department of Advanced Interconnection Materials, Institute of Science and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan; tel. 81-6-6879-8521; fax 81-6-6879-8522; and e-mail nogi@eco.sanken.osaka-u.ac.jp.
Hiroyuki Yano
Affiliation:
Laboratory of Active Bio-Based Materials, Research Institute of Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan; tel. and fax 81-0774-38-3669; and e-mail yano@rish.kyoto-u.ac.jp.
Get access

Abstract

Organic light-emitting diodes bring a whole new level of image quality, power consumption, and very thin profiles to displays. In addition, with the appropriate choice of a flexible substrate, paper-like flexible displays that are lightweight, robust, and conformable can be produced. This will make it possible to roll or fold the displays for portability or incorporate them in clothing as wearable displays. Plastic substrates are considered prospective materials due to their inherent flexibility and optical qualities. However, one of the major drawbacks of plastics is the large thermal expansion. The thermal expansion of the substrate has to be compatible with those of the layers deposited on it, otherwise these layers will become strained and crack during the thermal cycling involved in the display manufacture. One of the proposed solutions to reduce the thermal expansion of plastics without appreciable loss in transparency is to reinforce them with nanofibers. These nanofibers are already available in enormous quantities in nature, in the form of cellulose, with the caveat that they have to be extracted properly. Here we present the methodologies required to obtain the cellulose nanofibers and to produce optically transparent composites for use in flexible displays.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Crawford, G.P., Flexible Flat Panel Displays, Lowe, A.C., Ed. (Wiley, Society for Information Display, New York, 2005).CrossRefGoogle Scholar
2.O'Sullivan, A.C., Cellulose 4, 173 (1997).Google Scholar
3.Gordon, J.E., The New Science of Strong Materials (Princeton University Press, New Jersey, 1976).Google Scholar
4.Nishino, T., Takano, K., Nakamae, K., J. Polym. Sci., Part B: Polym. Phys. 33, 1647 (1995).Google Scholar
5.Nishino, T., Matsuda, I., Hirao, K., Macromolecules 37, 7683 (2004).Google Scholar
6.Nakagaito, A.N., Yano, H., Cellulose Nanocomposites Processing, Characterization and Properties, Oksman, K., Sain, M., Eds. (American Chemical Society, Washington, DC, 2006).Google Scholar
7.Yano, H., Sugiyama, J., Nakagaito, A.N., Nogi, M., Matsuura, T., Hikita, M., Handa, K., Adv. Mater. 17, 153 (2005).CrossRefGoogle Scholar
8.Nogi, M., Handa, K., Nakagaito, A.N., Yano, H., Appl. Phys. Lett. 87, 243110 (2005).CrossRefGoogle Scholar
9.Nogi, M., Ifuku, S., Abe, K., Handa, K., Nakagaito, A.N., Yano, H., Appl. Phys. Lett. 88, 133124 (2006).Google Scholar
10.Nogi, M., Abe, K., Handa, K., Nakatsubo, F., Ifuku, S., Yano, H., Appl. Phys. Lett. 89, 233123 (2006).CrossRefGoogle Scholar
11.Ifuku, S., Nogi, M., Abe, K., Handa, K., Nakatsubo, F., Yano, H., Biomacromolecules 8, 1973 (2007).Google Scholar
12.Nogi, M., Yano, H., Adv. Mater. 20, 1849 (2008).Google Scholar
13.Jung, R., Kim, H.-S., Kim, Y., Kwon, S.-M., Lee, H.S., Jin, H.-J., J. Polym. Sci., Part B: Polym. Phys. 46, 1235 (2008).CrossRefGoogle Scholar
14.Iwamoto, S., Nakagaito, A.N., Yano, H., Nogi, M., Appl. Phys. A 81, 1109 (2005).CrossRefGoogle Scholar
15.Turbak, A.F., Snyder, F.W., Sandberg, K.R., J. Appl. Polym. Sci.: Appl. Polym. Symp. 815 (1983).Google Scholar
16.Herrick, F.W., Casebier, R.L., Hamilton, J.K., Sandberg, K.R., J. Appl. Polym. Sci.: Appl. Polym. Symp. 797 (1983).Google Scholar
17.Taniguchi, T., Okamura, K., Polym. Int. 47, 291 (1998).Google Scholar
18.Shimazaki, Y., Miyazaki, Y., Takezawa, Y., Nogi, M., Abe, K., Ifuku, S., Yano, H., Biomacromolecules 8, 2976 (2007).CrossRefGoogle Scholar
19.Abe, K., Iwamoto, S., Yano, H., Biomacro-molecules 8, 3276 (2007).CrossRefGoogle Scholar
20.Iwamoto, S., Nakagaito, A.N., Yano, H., Appl. Phys. A 89, 461 (2007).CrossRefGoogle Scholar
21.Iwamoto, S., Abe, K., Yano, H., Biomacro-molecules 9, 1022 (2008).Google Scholar
22.Okahisa, Y., Yoshida, A., Miyaguchi, S., Yano, H., Compos. Sci. Technol. 69, 1958 (2009).CrossRefGoogle Scholar
23.Nogi, M., Iwamoto, S., Nakagaito, A.N., Yano, H., Adv. Mater. 21, 1595 (2009).CrossRefGoogle Scholar
24.Sugiyama, J., Vuong, R., Chanzy, H., Macromolecules 24, 4168 (1991).Google Scholar
25.Nogi, M., Yano, H., Appl. Phys. Lett. 94, 233117 (2009).CrossRefGoogle Scholar
26.Saito, T., Nishiyama, Y., Putaux, J.-L., Vignon, M., Isogai, A., Biomacromolecules 7, 1687 (2006).Google Scholar
27.Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y., Isogai, A., Biomacromolecules 10, 162 (2009).Google Scholar