Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-br6r8 Total loading time: 0.326 Render date: 2022-11-29T09:32:35.291Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Article contents

In situ and operando transmission electron microscopy of catalytic materials

Published online by Cambridge University Press:  13 January 2015

Peter A. Crozier
Affiliation:
School of Engineering of Matter, Transport and Energy, Arizona State University, USA; crozier@asu.edu
Thomas W. Hansen
Affiliation:
Center for Electron Nanoscopy, Technical University of Denmark, Denmark; twh@cen.dtu.dk
Get access

Abstract

Catalytic nanomaterials play a major role in chemical conversions and energy transformations. Understanding how materials control and regulate surface reactions is a major objective for fundamental research on heterogeneous catalysts. In situ environmental transmission electron microscopy (ETEM) is a powerful technique for revealing the atomic structures of materials at elevated temperatures in the presence of reactive gases. This approach can allow the structure–reactivity relations underlying catalyst functionality to be investigated. Thus far, ETEM has been limited by the absence of in situ measurements of gas-phase catalytic products. To overcome this deficiency, operando TEM techniques are being developed that combine atomic characterization with the simultaneous measurement of catalytic products. This article provides a short review of the current status and major developments in the application of ETEM to gas-phase catalysis over the past 10 years.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ertl, G., Knözinger, H., Weitkamp, J., Handbook of Heterogeneous Catalysis (VCH, Weinheim, Germany, 1997).CrossRefGoogle Scholar
Somorjai, G.A., Li, Y., Introduction to Surface Chemistry and Catalysis 2nd ed.(Wiley-VCH, Weinheim, Germany, 2010), p. 442.Google Scholar
Hansen, T.W., Wagner, J.B., Hansen, P.L., Dahl, S., Topsoe, H., Jacobson, C.J.H., Science 294, 1508 (2001).CrossRef
Baker, R.T.K., Barber, M.A., Harris, P.S., Feates, F.S., White, R.J., J. Catal. 26, 51 (1972).CrossRef
Baker, R.T.K., Harris, P.S., Thomas, R.B., Waite, R.J., J. Catal. 30, 86 (1973).CrossRef
Sharma, R., J. Mater. Res. 20 (7), 1695 (2005).CrossRef
Gai, P.L., Boyes, E.D., in In-Situ Microscopy in Materials Research, Gai, P.L., Ed. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997), pp. 123146.CrossRefGoogle Scholar
Gai, P.L., Boyes, E.D., Helveg, S., Hansen, P.L., Giorgio, S., Henry, C.R., MRS Bull. 32 (12), 1044 (2007).CrossRef
Sharma, R., Crozier, P.A., in Handbook of Microscopy for Nanotechnology, Yao, N., Wang, Z.L., Eds. (Kluwer Academic Publishers, New York, 2005), pp. 531563.CrossRefGoogle Scholar
Giorgio, S., Sao Joao, S., Nitsche, S., Chaudanson, D., Sitja, G., Henry, C.R., Ultramicroscopy 106, 503 (2006).CrossRef
Parkinson, G.M., Catal. Lett. 2, 303 (1989).CrossRef
Creemer, J.F., Helveg, S., Hoveling, G.H., Ullmann, S., Molenbroek, A.M., Sarro, P.M., Zandbergen, H.W., Ultramicroscopy 108, 993 (2008).CrossRef
Alan, T., Yokosawa, T., Gaspar, J., Pandraud, G., Paul, O., Creemer, F., Sarro, P.M., Zandbergen, H.W., Appl. Phys. Lett. 100, 4 (2012).CrossRef
Yokosawa, T., Alan, T., Pandraud, G., Dam, B., Zandbergen, H., Ultramicroscopy 112, 47 (2012).CrossRef
Vendelbo, S.B., Kooyman, P.J., Creemer, J.F., Morana, B., Mele, L., Dona, P., Nelissen, B.J., Helveg, S., Ultramicroscopy 133, 72 (2013).CrossRef
Hansen, T.W., Wagner, J.B., Dunin-Borkowski, R.E., Mater. Sci. Technol. 26, 1338 (2010).CrossRef
Swann, P.R., Tighe, N.J., paper presented at the 5th European Congress on Electron Microscopy., Manchester, UK, Institute of Physics, Royal Microscopical Society, 1972.
Doole, R.C., Parkinson, G.M., Stead, J.M., Inst. Phys. Conf. Ser. 119, 157 (1991).
Lee, T.C., Dewald, D.K., Eades, J.A., Robertson, I.M., Birnbaum, H.K., Rev. Sci. Instrum. 62, 1438 (1991).CrossRef
Boyes, E.D., Gai, P.L., Ultramicroscopy 67, 219 (1997).CrossRef
Sharma, R., Weiss, K., Microsc. Res. Tech. 42, 270 (1998).3.0.CO;2-U>CrossRef
Hansen, P.L., Wagner, J.B., Proc. 12th Eur. Congr. Electron Microsc. (Czechoslovak Society for Electron Microscopy, Brno, Czech Republic, 2000), vol. 2, pp. 537538.
Jinschek, J.R., Helveg, S., Micron 43, 1156 (2012).CrossRef
Li, P., Liu, J., Nag, N., Crozier, P.A., J. Catal. 262, 73 (2009).CrossRef
Banerjee, R., Crozier, P.A., J. Phys. Chem. C 116, 11486 (2012).CrossRef
Dehghan, R., Hansen, T.W., Wagner, J.B., Holmen, A., Rytter, E., Borg, O., Walmsley, J.C., Catal. Lett. 141, 754 (2011).CrossRef
Xin, H.L.L., Pach, E.A., Diaz, R.E., Stach, E.A., Salmeron, M., Zheng, H.M., ACS Nano 6, 4241 (2012).CrossRef
Jeangros, Q., Faes, A., Wagner, J.B., Hansen, T.W., Aschauer, U., Van Herle, J., Hessler-Wyser, A., Dunin-Borkowski, R.E., Acta Mater. 58, 4578 (2010).CrossRef
Haruta, M., Yamada, N., Kobayashi, T., Iijima, S., J. Catal. 115, 301 (1989).CrossRef
Giorgio, S., Cabie, M., Henry, C.R., Gold Bull. 41, 167 (2008).CrossRef
Uchiyama, T., Yoshida, H., Kuwauchi, Y., Ichikawa, S., Shimada, S., Haruta, M., Takeda, S., Angew. Chem. Int. Ed. 50, 10157 (2011).CrossRef
Yoshida, H., Kuwauchi, Y., Jinschek, J.R., Sun, K.J., Tanaka, S., Kohyama, M., Shimada, S., Haruta, M., Takeda, S., Science 335, 317 (2012).CrossRef
Chenna, S., Banerjee, R., Crozier, P.A., ChemCatChem 3, 1051 (2011).CrossRef
Chenna, S., Crozier, P.A., Micron 43, 1188 (2012).CrossRef
Gorte, R.J., Vohs, J.M., in Annual Review of Chemical and Biomolecular Engineering, Prausnitz, J.M., Ed. (Annual Reviews, Palo Alto, CA, 2011), vol. 2, pp. 930.CrossRef
Yeste, M.P., Hernandez, J.C., Bernal, S., Blanco, G., Calvino, J.J., Perez-Omil, J.A., Pintado, J.M., Catal. Today 141, 409 (2009).CrossRef
Crozier, P.A., Wang, R., Sharma, R., Ultramicroscopy 108, 1432 (2008).CrossRef
Wang, R., Crozier, P.A., Sharma, R., J. Phys. Chem. C 113, 5700 (2009).CrossRef
Sharma, V., Crozier, P.A., Sharma, R., Adams, J.B., Catal. Today 180, 2 (2012).CrossRef
Kudo, A., Miseki, Y., Chem. Soc. Rev. 38, 253 (2009).CrossRef
Cavalca, F., Laursen, A.B., Kardynal, B.E., Dunin-Borkowski, R.E., Dahl, S., Wagner, J.B., Hansen, T.W., Nanotechnology 23, 075705 (2012).CrossRef
Miller, B.K., Crozier, P.A., Microsc. Microanal. 19, 461 (2013).CrossRef
Zhang, L.X., Miller, B.K., Crozier, P.A., Nano Lett. 13, 679 (2013).CrossRef
Datye, A.K., Catal. Today 111, 59 (2006).CrossRef
Liu, R.-J., Crozier, P.A., Smith, C.M., Hucul, D.A., Blackson, J., Salaita, G., Appl. Catal. A 282, 111 (2005).CrossRef
Hansen, T.W., Delariva, A.T., Challa, S.R., Datye, A.K., Acc. Chem. Res. 46, 1720 (2013).CrossRef
DeLaRiva, A.T., Hansen, T.W., Challa, S.R., Datye, A.K., J. Catal. 308, 291 (2013).CrossRef
Challa, S.R., Delariva, A.T., Hansen, T.W., Helveg, S., Sehested, J., Hansen, P.L., Garzon, F., Datye, A.K., J. Am. Chem. Soc. 133, 20672 (2011).CrossRef
Simonsen, S.B., Chorkendorff, I., Dahl, S., Skoglundh, M., Sehested, J., Helveg, S., J. Am. Chem. Soc. 132, 7968 (2010).CrossRef
Benavidez, A.D., Kovarik, L., Genc, A., Agrawal, N., Larsson, E.M., Hansen, T.W., Karim, A.M., Datye, A.K., ACS Catal. 2, 2349 (2012).CrossRef
Simonsen, S.B., Chorkendorff, I., Dahl, S., Skoglundh, M., Sehested, J., Helveg, S., J. Catal. 281, 147 (2011).CrossRef
Bañares, M.A., Wachs, I.E., J. Raman Spectrosc. 33, 359 (2002).CrossRef
Vendelbo, S.B., Elkjær, C.F., Falsig, H., Puspitasari, I., Dona, P., Mele, L., Morana, B., Nelissen, B.J., van Rijn, R., Creemer, J.F., Kooyman, P.J., Helveg, S., Nat. Mater. 13, 884 (2014).CrossRef
Miller, B.K., Crozier, P.A., Microsc. Microanal. 20, 815 (2014).CrossRef
Crozier, P.A., Chenna, S., Ultramicroscopy 111, 177 (2011).CrossRef
Chenna, S., Crozier, P.A., ACS Catal. 2, 2395 (2012).CrossRef
Miller, B.K., Crozier, P.A., Microsc. Microanal. 20, 1564 (2014).CrossRef

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

In situ and operando transmission electron microscopy of catalytic materials
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

In situ and operando transmission electron microscopy of catalytic materials
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

In situ and operando transmission electron microscopy of catalytic materials
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *