Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-30T04:00:01.468Z Has data issue: false hasContentIssue false

Electroless Copper Deposition on Metals and Metal Silicides

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Chemical plating techniques have been used in silicon processing for many years for junction delineation and ohmic contact formation. In recent years, interest in this area has been renewed because of the potential use of electroless copper deposition for ultra-large-scale integration (ULSI) metallization and for the formation of thin metal etch masks for deep-ultraviolet lithography. Good deposition selectivity, low operating temperature, high copper purity, good filling characteristics, and planar topography have been among the many advantageous attributes reported from early investigations.

In the June 1993 issue of the MRS Bulletin on Copper Metallization, Cho et al. gave an exposition on the use of electroless copper for VLSI. More comprehensive reviews of the electrochemical fundamentals can be found in References 8,9, and 10. This article summarizes the current understanding of various chemical and material aspects of this deposition method in an attempt to give an overview of the film growth characteristics for thin film applications. Because of length limitations, only selected topics are included. The emphasis is on the initiation conditions and the resultant microstructure and properties obtained. We also discuss special considerations for fine pattern formation.

The information presented here applies primarily to electroless copper deposition on metals and metal silicides since these are the typical substrate surfaces for metallization in contact vias of ULSI circuits. Strictly speaking, metallization of upper-level interconnects occurs mostly on a dielectric base. However, since copper systems usually require a diffusion barrier to shield the copper from diffusing into the silicon, we can treat the deposition process startingfrom this layer onward.

Type
Copper Metallization in Industry
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. See, for example, Silverman, S.J. and Benn, D.R., J. Electrochem. Soc. 105 (1958) p. 170; D.R. Turner, J. Electrochem. Soc. 106 (1959) p. 701.CrossRefGoogle Scholar
2. See, for example, Sullivan, M.V. and Eigler, J.H., J. Electrochem. Soc. 104 (1957) p. 226; M.C. Waltz, U.S. Patent No. 2,814,589 (1957).CrossRefGoogle Scholar
3.Pai, P.L. and Ting, C.H., IEEE Electron Device Lett. 10 (9) (1989) p. 423.CrossRefGoogle Scholar
4.Ting, C.H. and Paunovic, M., J. Electrochem. Soc. 136 (1989) p. 456.CrossRefGoogle Scholar
5.Calvert, J.M., Dulcey, C.S., Peckerar, M.C., Schnur, J.M., Georger, J.H. Jr., Calabrese, G.S., and Sricharoenchaikit, P., Solid State Technology 34 (10) (1991) p. 77.Google Scholar
6.Calvert, J.M., Chen, M.S., Dulcey, C.S., Georger, J.H., Peckerar, M.C., Schnur, J.M., and Schoen, P.E., J. Electrochem. Soc. 139 (1992) p. 1677.CrossRefGoogle Scholar
7.Cho, J.S.H., Rang, H.K., Wong, S.S., and Shacham-Diamand, Y., MRS Bulletin XVIII (6) (1993) p. 31.CrossRefGoogle Scholar
8.Bindra, P. and White, J.R., in Electroless Plating: Fundamentals and Applications, edited by Mallory, G.O. and Hajdu, J.B. (AESF, Orlando, FL, 1990) p. 289.Google Scholar
9.Ohno, I., Mater. Sci. and Eng. A146 (1991) p. 33.CrossRefGoogle Scholar
10.Okinaka, Y. and Osaka, T., in Advances in Electrochemical Science and Engineering, Vol. 3, edited by Gerischer, H. and Tobias, C.W. (VCH Verlagsgesellschaft mbH, Weinheim, Germany, 1993) p. 55.CrossRefGoogle Scholar
11.Bindra, P. and Roldan, J., J. Electrochem. Soc. 132 (1985) p. 2581.CrossRefGoogle Scholar
12.Ohno, I., Wakabayashi, O., and Haruyama, S., J. Electrochem. Soc. 132 (1985) p. 2323.CrossRefGoogle Scholar
13.Meek, R.X., J. Electrochem. Soc. 122 (1975) p. 1177.CrossRefGoogle Scholar
14.Osaka, T., Takematsu, H., and Nihei, K., J. Electrochem. Soc. 127 (1980) p. 1021.CrossRefGoogle Scholar
15.Kiang, M.H., Lieberman, M.A., Cheung, N.W., and Qian, X.Y., Appl. Phys. Lett. 60 (22) (1992) p. 2767.CrossRefGoogle Scholar
16.Baum, T.H., J. Electrochem. Soc. 137 (199) p. 252.CrossRefGoogle Scholar
17.Flottmann, T., Tulke, A., Esper, E., and Lohmann, W., in Advanced Electronic Packaging Materials, edited by Barfknecht, A.T., Partridge, J., Chen, C.J., and Li, C-Y. (Mater. Res. Soc. Symp. Proc. 167, Pittsburgh, PA, 1989) p. 309.Google Scholar
18.Jackson, R.L., J. Electrochem. Soc. 135 (1988) p. 3172; J. Electrochem. Soc., 137 (1990) p. 95.CrossRefGoogle Scholar
19.Pourbaix, M., Atlas of Electrochemical Equilibria (Pergamon Press, London, 1966).Google Scholar
20.Kondo, K., Ishida, N., Ishikawa, F., and Ishikawa, J., Japan Kokai Tokkyo Koho, JP 01247577.Google Scholar
21. A. Pedraza, J., Godbole, M.J., DeSilva, M.J., and Lowndes, D.H., in Laser Ablation in Materials Processing: Fundamental and Applications, edited by Braren, B., Dubowski, J., and Norton, D. (Mater. Res. Soc. Symp. Proc. 285, Pittsburgh, PA, 1993) p. 203.Google Scholar
22.Gaudiello, J.G. and Ballard, G.L., IBM J. Res. Dev. 37 (1993) p. 107.CrossRefGoogle Scholar
23.Mak, C.Y., Miller, B., Feldman, L.C., Wong, Y.H., Weir, B.E., Blanco, J., Anygal, M., and Shacham-Diamand, Y., in Symp. Proc. Electrochemical Technology Applications in Electronics, edited by Romankiw, L.T., Datta, M., Osaka, T., and Yamazaki, Y. (The Electrochemical Society, Pennington, NJ, 1993) p. 233.Google Scholar
24.Okinaka, Y., Paper 144, presented at The Electrochemical Soc. Meeting, Detroit, MI, 1969.Google Scholar
25.Kita, H., J. Electrochem. Soc. 113 (1966) p. 1095.CrossRefGoogle Scholar
26.Van den Meerakker, J.E.A.M., J. Appl. Electrochem. 11 (1981) p. 387.CrossRefGoogle Scholar
27.Mak, C.Y., Miller, B., Feldman, L.C., Weir, B.E., Higashi, G.S., Fitzgerald, E.A., Boone, T., Doherty, C.J., and van Dover, R.B., Appl. Phys. Lett. 59 (26) (1991) p. 3449.CrossRefGoogle Scholar
28.Cho, J.S.H., Kang, H.K., Beiley, M.A., and Wong, S.S., in 1991 Symposium on VLSI Technology (Jpn. Soc. of Applied Physics, Tokyo, 1991) p. 39.CrossRefGoogle Scholar
29.Green, M., Ali, Y.S., Boone, T., Davidson, B.A., Feldman, L.C., and Nakahara, S., J. Electrochem. Soc. 134 (1987) p. 2285.CrossRefGoogle Scholar
30.Agens, M.C., U.S. Patent No. 2,938305 (1960).Google Scholar
31.Schaaf, T., Morton, K.L., Madsen, B.S., AES 1st Electroless Plating Symp., Paper 18 (1982).Google Scholar
32.Jacobs, J.W.M. and Rikken, J.M.G., J. Electrochem. Soc. 135 (1988) p. 2822.CrossRefGoogle Scholar
33.van der Putten, A.M.T. and de Bakker, J.W.G., J. Electrochem. Soc. 140 (1993) p. 2221.CrossRefGoogle Scholar
34.Mak, C.Y. (to be published).Google Scholar
35.Sard, R., J. Electrochem. Soc. 117 (1970) p. 864.CrossRefGoogle Scholar
36.Okinaka, Y. and Straschil, H.K., J. Electrochem. Soc. 133 (1986) p. 2608.CrossRefGoogle Scholar
37.Nakahara, S., Mak, C.Y., and Okinaka, Y., J. Electrochem. Soc. 140 (1993) p. 533.CrossRefGoogle Scholar
38.Nakahara, S. and Okinaka, Y., Acta Metall. 31 (5) (1983) p. 713.CrossRefGoogle Scholar
39.Kim, J., Wen, S.H., Jung, D.Y., and Johnson, R.W., IBM J. Res. Dev. 28 (6) (1984) p. 697.CrossRefGoogle Scholar
40.Li, J. and Shacham-Diamand, Y., J. Electrochem. Soc. 139 (1992) p. L37.CrossRefGoogle Scholar
41.Nakahara, S., Acta Metall. 36 (7) (1988) p. 1669.CrossRefGoogle Scholar
42.Okinaka, Y. and Nakahara, S., Acta Metall. 123 (1976) p. 475.Google Scholar
43.Nakahara, S., Mak, C.Y., and Okinaka, Y., J. Electrochem. Soc. 138 (1991) p. 1421.CrossRefGoogle Scholar
44.Mak, C.Y., Nakahara, S., Okinaka, Y., Trop, H.S., and Taylor, J.A., J. Electrochem. Soc. 140 (1993) p. 2363.CrossRefGoogle Scholar