Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-10-04T14:25:35.587Z Has data issue: false hasContentIssue false

Electronic-Structure Theory of Semiconductor Quantum Dots

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Progress made in the growth of “free-standing” (e.g., colloidal) quantum dots (see also articles in this issue by Nozik and Mićić, and by Alivisatos) and in the growth of semiconductor-embedded (“self-assembled”) dots (see also the article by Bimberg, Grundmann, and Ledentsov in this issue) has opened the door to new and exciting spectroscopic studies of quantum structures. These have revealed rich and sometimes unexpected features such as quantum-dot shape-dependent transitions, size-dependent (red) shifts between absorption and emission, emission from high excited levels, surface-mediated transitions, exchange splitting, strain-induced splitting, and Coulomb-blockade transitions. These new observations have created the need for developing appropriate theoretical tools capable of analyzing the electronic structure of 103–106-atom objects. The main challenge is to understand (a) the way the one-electron levels of the dot reflect quantum size, quantum shape, interfacial strain, and surface effects and (b) the nature of “many-particleinteractions such as electron-hole exchange (underlying the “red shift”), electron-hole Coulomb effects (underlying excitonic transitions), and electron-electron Coulomb (underlying Coulomb-blockade effects).

Interestingly, while the electronic structure theory of periodic solids has been characterized since its inception by a diversity of approaches (all-electron versus pseudopotentials; Hartree Fock versus density-functional; computational schemes creating a rich “alphabetic soup,” such as APW, LAPW, LMTO, KKR, OPW, LCAO, LCGO, plane waves, ASW, etc.), the theory of quantum nano-structures has been dominated mainly by a single approach so widely used that I refer to it as the “Standard Model”: the effective-mass approximation (EMA) and its extension to the “k · p” (where k is the wave vector and p is the momemtum). In fact, speakers at nanostructure conferences often refer to it as “theory” without having to specify what is being done. The audience knows.

Type
Semiconductor Quantum Dots
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Weller, H. and Eychmüller, A., in Semiconductor Nanoclusters, edited by Kamat, P.V. and Meisel, D., vol. 103 (Elsevier, New York, 1996) p. 5.Google Scholar
2.Overbeek, J.T.G., Adv. Colloid I. Sci. 15 (1982) p. 251.CrossRefGoogle Scholar
3.Seifert, W., Carlsson, N., Miller, M., Pistol, M.E., Samuelson, L., and Wallenberg, L., Prog. Cryst. Growth Charact. 33 (1966) p. 423.CrossRefGoogle Scholar
4.Tabuchi, M., Noda, S., and Sasaki, A., in Science and Technology of Mesoscopic Structures, edited by Namba, S., Hamaguchi, C., and Ando, T. (Springer, Tokyo, 1992) p. 379.CrossRefGoogle Scholar
5.Luttinger, J.M. and Kohn, W., Phys. Rev. 97 (1955); p. 869; E.O. Kane, J. Phys. Chem. Solids 1 (1957) p. 249; M. Cardona and F.H. Pollak, Phys. Rev. 142 (1966) p. 530.CrossRefGoogle Scholar
6.Kane, E.O., in Physics of III-V Compounds, edited by Willardson, R.K. and Beer, A.C., Semiconductors and Semimetals, vol. 1 (Academic Press, New York, 1966) p. 75.Google Scholar
7.Bastard, G., Bruin, J.A., and Ferreira, R., in Solid State Physics, edited by Turnbull, D. and Ehrenreich, H., vol. 44 (Academic Press, New York, 1991) p. 229.Google Scholar
8.Wang, L.W. and Zunger, A., Phys. Rev. B 54 (1996) p. 11417.CrossRefGoogle Scholar
9.Wood, D.M., Gershoni, D., and Zunger, A., Europhys. Lett. 33 (1996) p. 383; D.M. Wood and A. Zunger, Phys. Rev. B 53 (1996) p. 7949.CrossRefGoogle Scholar
10.Norris, D.J. and Bawendi, M.G., Phys. Rev. B 83 p. 16338.Google Scholar
11.Wind, O., Gindell, F., and Waggon, U., J. Lumin. 72–74 (1997) p. 300.CrossRefGoogle Scholar
12.Gershoni, D., Henry, C.H., and Baraff, G.A., IEEE J. Quantum Electron. 29 (1993) p. 2433.CrossRefGoogle Scholar
13.Perdew, J.P. and Zunger, A., Phys. Rev. B 23 (1981) p. 5048.CrossRefGoogle Scholar
14.Zunger, A., Yeh, C.Y., Wang, L.W., and Zhang, S.B., in Int. Conf. Phys. Semicond. (World Scientific, Singapore, 1994) p. 1763; S.B. Zhang and A. Zunger, Appl. Phys. Lett. 63 (1993) p. 1399; S.B. Zhang, C.Y. Yeh, and A. Zunger, Phys. Rev. B 48 (1993) p. 11204.Google Scholar
15.Pryor, C., Kim, J., Wang, L.W., Williamson, A., and Zunger, A., J. Appl. Phys. 83 (5) (1998).CrossRefGoogle Scholar
16.Kim, J., Wang, L.W., and Zunger, A., Phys. Rev. B (in press).Google Scholar
17.Fu, H. and Zunger, A., Phys. Rev. B 56 (1997) p. 1496.CrossRefGoogle Scholar
18.Wang, L.W. and Zunger, A., Phys. Rev. B 51 (1995) p. 17398; H. Fu and A. Zunger, Phys. Rev. B 55 (1997) p. 1642.CrossRefGoogle Scholar
19.Littau, K.A., Szajowski, P.J., Muller, A.J., Kortan, A.R., and Brus, L.E.. J. Phys. Chem. 91 (1993) p. 1224.CrossRefGoogle Scholar
20.Keating, P.N., Phys. Rev. 145 (1966) p. 637.CrossRefGoogle Scholar
21.Brust, D., Phillips, J.C., and Bassani, F., Phys. Rev. Lett. 9 (1962) p. 94; M.L. Cohen and T.R. Bergstresser, Phys. Rev. 141 (1966) p. 789.CrossRefGoogle Scholar
22.Ren, S.Y. and Dow, J.D., Phys. Rev. B 45 (1992) p. 6492; J.P. Proot, C. Delerue, and G. Allen, Appl. Phys. Lett. 61 (1992) p. 1948.CrossRefGoogle Scholar
23.Wang, L.W. and Zunger, A., J. Chem. Phys. 100 (1994) p. 2394; L.W. Wang and A. Zunger, J. Chem. Phys. 94 (1994) p. 2158.CrossRefGoogle Scholar
24.Wang, L.W. and Zunger, A., in Semiconductor Nanoclusters: Studies in Surface Science and Catalysis, edited by Kamat, P.V. and Meisel, D., vol. 103 (Elsevier, New York, 1996) p. 161.Google Scholar
25.Franceschetti, A. and Zunger, A., Phys. Rev. Lett. 78 (1997) p. 915.CrossRefGoogle Scholar
26.Franceschetti, A., Fu, H., Wang, L.W., and Zunger, A. (unpublished manuscript).Google Scholar
27.Wang, L.W. and Zunger, A., Phys. Rev. Lett. 73 (1994) p. 1039.CrossRefGoogle Scholar
28.Chamarro, M., Gourdon, C., Lavallard, P., Lublinskaya, O., and Ekimov, A.I., Phys. Rev. B 53 (1996) p. 1336.CrossRefGoogle Scholar
29.Nirmal, M., Norris, D.J., Kuno, M., Bawendi, M.G., Efros, A., and Rosen, M., Phys. Rev. Lett. 75 (1995) p. 3728; M. Nirmal, D.J. Norris, M. Kuno, M.G. Bawendi, A. Efros, and M. Rosen Phys. Rev. B 54 (1996) p. 4843; M. Nirmal, D.J. Norris, M. Kuno, M.G. Bawendi, A. Efros, and M. Rosen Phys. Rev. B 53 (1996) p. 16347.CrossRefGoogle Scholar
30.Knox, R.S., Solid State Phys. 5 (1963).Google Scholar
31.Takagahara, T., Phys. Rev. B 47 (1993) p. 4569.CrossRefGoogle Scholar
32.Mićić, O.I., Cheong, H.M., Fu, H., Zunger, A., Sprague, J.R., Mascarenhas, A., and Nozik, A.J., J. Phys. Chem. B 101 (1997) p. 4904.CrossRefGoogle Scholar
33.Micic, O.I., Sprague, J., Lu, Z., and Nozik, A.J., Appl. Phys. Lett. 68 (1996) p. 3150; O.I. Mićić, C.J. Curtis, K.M. Jones, J.R. Sprague, and A.J. Nozik, J. Phys. Chem. 98 (1994) p. 4966.CrossRefGoogle Scholar
34.Wang, L.W. and Zunger, A., Phys. Rev. B 53 (1996) p. 9579.CrossRefGoogle Scholar
35.Murray, C.B., Norris, D.J., and Bawendi, M.G., J. Am. Chem. Soc. 115 (1993) p. 8706.CrossRefGoogle Scholar
36.Fu, H., Wang, L.W., and Zunger, A., Appl. Phys. Lett. 71 (1997) p. 3433.CrossRefGoogle Scholar
37.Grigoryan, G.B., Kazaryan, E.M., Efros, A.L., and Yazeva, T.V., Sov. Phys. Solid State 32 (1990) p. 1031.Google Scholar
38.Richard, T., Lefebre, P., Mathieu, H., and Allegre, J., Phys. Rev. B 53 (1996) p. 7287.CrossRefGoogle Scholar
39.Kim, J., Wang, L.W., and Zunger, A., Phys. Rev. B Rapid Commun. 56 (1997) p. R15541.CrossRefGoogle Scholar
40.Williamson, A., Fu, H., and Zunger, A., Phys. Rev. B Rapid Commun. 57 (7) (1998).CrossRefGoogle Scholar