Hostname: page-component-7d684dbfc8-zgpz2 Total loading time: 0 Render date: 2023-09-25T08:39:03.568Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Fast and efficient molecular electrocatalysts for H2 production: Using hydrogenase enzymes as guides

Published online by Cambridge University Press:  17 January 2011

Jenny Y. Yang
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352, USA, jenny.yang@pnl.gov
R. Morris Bullock
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352, USA, bullock@pnl.gov
M. Rakowski DuBois
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352, USA, mary.rakowskidubois@pnl.gov
Daniel L. DuBois
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352, USA, daniel.dubois@pnl.gov
Get access

Abstract

Hydrogen generation using solar energy will require the development of efficient electrocatalysts for proton reduction. This article discusses the important role that proton movement plays in hydrogenase enzymes and potential devices for solar generation. Studies of hydrogenase enzymes provide many important design principles for the development of simpler molecular catalysts. These principles are illustrated with examples from the literature and from the authors’ laboratories. In particular, pendant bases incorporated in the second coordination sphere of catalytic molecules play a number of important roles that are crucial to efficient catalysis. These roles include acting as relays to move protons between the metal center and solution, promoting intra- and intermolecular proton transfer reactions, coupling proton and electron transfer reactions, assisting heterolytic cleavage of hydrogen, and stabilizing critical reaction intermediates. The importance of controlling proton movement on the molecular scale underscores the importance of a similar degree of control in devices designed for the solar production of hydrogen or any fuel generation process involving multiple electrons and protons.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Armaroli, N., Balzani, V., Angew. Chem. Int. Ed. 46, 52 (2007).CrossRefGoogle Scholar
2.Lewis, N.S., Nocera, D.G., Proc. Nat. Acad. Sci. U.S.A. 103, 15729 (2006).CrossRefGoogle Scholar
3.Lubitz, W., Tumas, W., Chem. Rev. 107, 3900 (2007).CrossRefGoogle Scholar
4.Frey, M., ChemBioChem 3, 153 (2002).3.0.CO;2-B>CrossRefGoogle Scholar
5.Peters, J.W., Curr. Opin. Struct. Biol. 9, 670 (1999).CrossRefGoogle Scholar
6.Peters, J.W., Lanzilotta, W.N., Lemon, B.J., Seefeldt, L.C., Science 282, 1853 (1998).CrossRefGoogle Scholar
7.Nicolet, Y., de Lacey, A.L., Vernède, X., Fernandez, V.M., Hatchikian, E.C., Fontecilla-Camps, J.C., J. Am. Chem. Soc. 123, 1596 (2001).CrossRefGoogle Scholar
8.Fontecilla-Camps, J.C., Volbeda, A., Cavazza, C., Nicolet, Y., Chem. Rev. 107, 4273 (2007).CrossRefGoogle Scholar
9.Vincent, K.A., Parkin, A., Armstrong, F.A., Chem. Rev. 107, 4366 (2007).CrossRefGoogle Scholar
10.Page, C.C., Moser, C.C., Chen, X., Dutton, P.L., Nature 402, 47 (1999).CrossRefGoogle Scholar
11.Onuchic, J.N., Beratan, D.N., Winkler, J.R., Gray, H.B., Annu. Rev. Biophys. Biomol. Struct. 21, 349 (1992).CrossRefGoogle Scholar
12.Axup, A.W., Albin, M., Mayo, S.L., Crutchley, R.J., Gray, H.B., J. Am. Chem. Soc. 110, 435 (1988).CrossRefGoogle Scholar
13.Silakov, A., Wenk, B., Reijerse, E., Lubitz, W., Phys. Chem. Chem. Phys. 11, 6592 (2009).CrossRefGoogle Scholar
14.Lubitz, W., Reijerse, E., van Gastel, M., Chem. Rev. 107, 4331 (2007).CrossRefGoogle Scholar
15.Williams, R.J.P., Nature 376, 643 (1995).CrossRefGoogle Scholar
16.Peters, J.W., Lanzilotta, W.N., Lemon, B.J., Seefeldt, L.C., Science 282, 1853 (1998).CrossRefGoogle Scholar
17.Montet, Y., Amara, P., Volbeda, A., Vernède, X., Hatchikian, E.C., Field, M.J., Frey, M., Fontecilla-Camps, J.C., Nat. Struct. Biol. 4, 523 (1997).CrossRefGoogle Scholar
18.Fan, H.-J., Hall, M.B., J. Am. Chem. Soc. 123, 3828 (2001).CrossRefGoogle Scholar
19.Rakowski DuBois, M., DuBois, D.L., Acc. Chem. Res. 42, 1974 (2009).CrossRefGoogle Scholar
20.Dubois, M.R., Dubois, D.L., Chem. Soc. Rev. 38, 62 (2009).CrossRefGoogle Scholar
21.Wilson, A.D., Shoemaker, R.K., Miedaner, A., Muckerman, J.T., DuBois, D.L., Rakowski DuBois, M., Proc. Nat. Acad. Sci. 14, 6951 (2007).CrossRefGoogle Scholar
22.Wilson, A.D., Newell, R.H., McNevin, M.J., Muckerman, J.T., DuBois, M.R., Dubois, D.L., J. Am. Chem. Soc. 128, 358 (2006).CrossRefGoogle Scholar
23.Curtis, C.J., Miedaner, A., Ciancanelli, R.F., Ellis, W.W., Noll, B.C., DuBois, M.R., DuBois, D.L., Inorg. Chem. 42, 216 (2003).CrossRefGoogle Scholar
24.Barton, B.E., Olsen, M.T., Rauchfuss, T.B., J. Am. Chem. Soc. 130, 16834 (2008).CrossRefGoogle Scholar
25.Wang, N., Wang, M., Liu, J., Jin, K., Chen, L., Sun, L., Inorg. Chem. 48, 11551 (2009).CrossRefGoogle Scholar
26.Schollhammer, P., Talarmin, J., Eds. C.R. Chim. 11 (8), 789944 (2008).CrossRefGoogle Scholar
27.Pickett, C.J., Best, S.P., Eds. Coord. Chem. Rev. 249 (15–16), 15171690 (2005).CrossRefGoogle Scholar
28.Tard, C., Pickett, C.J., Chem. Rev. 109, 2245 (2009).CrossRefGoogle Scholar
29.Le Cloirec, A., Best, S.P., Borg, S., Davies, S.C., Evans, D.J., Hughes, D.L., Pickett, C.J., Chem. Commun. 2285 (1999).CrossRefGoogle Scholar
30.Lyon, E.J., Georgakaki, I.P., Reibenspies, J.H., Darensbourg, M.Y., Angew. Chem. Int. Ed. 38, 3178 (1999).3.0.CO;2-4>CrossRefGoogle Scholar
31.Schmidt, M., Contakes, S.M., Rauchfuss, T.B., J. Am. Chem. Soc. 121, 9736 (1999).CrossRefGoogle Scholar
32.Li, H.X., Rauchfuss, T.B., J. Am. Chem. Soc. 124, 726 (2002).CrossRefGoogle Scholar
33.Ott, S., Kritikos, M., Åkermark, B., Sun, L., Lomoth, R., Angew. Chem. Int. Ed. 43, 1006 (2004).CrossRefGoogle Scholar
34.Felton, G.A.N., Vannucci, A.K., Okumura, N., Lockett, L.T., Evans, D.H., Glass, R.S., Lichtenberger, D.L., Organometallics 27, 4671 (2008).CrossRefGoogle Scholar
35.Liu, T., Darensbourg, M.Y., J. Am. Chem. Soc. 129, 7008 (2007).CrossRefGoogle Scholar
36.Appel, A.M., DuBois, D.L., DuBois, M.R., J. Am. Chem. Soc. 127, 12717 (2005).CrossRefGoogle Scholar
37.Connolly, P., Espenson, J.H., Inorg. Chem. 25, 2684 (1986).CrossRefGoogle Scholar
38.Hu, X., Brunschwig, B.S., Peters, J.C., J. Am. Chem. Soc. 129, 8988 (2007).CrossRefGoogle Scholar
39.Jacques, P.-A., Artero, V., Pécaut, J., Fontecave, M., Proc. Nat. Acad. Sci. U.S.A. 106, 20627 (2009).CrossRefGoogle Scholar
40.Dempsey, J.L., Brunschwig, B.S., Winkler, J.R., Gray, H.B., Acc. Chem. Res. 42, 1995 (2009).CrossRefGoogle Scholar
41.Berning, D.E., Noll, B.C., DuBois, D.L., J. Am. Chem. Soc. 121, 11432 (1999).CrossRefGoogle Scholar
42.Raebiger, J.W., Miedaner, A., Curtis, C.J., Miller, S.M., DuBois, D.L., J. Am. Chem. Soc. 126, 5502 (2004).CrossRefGoogle Scholar
43.Curtis, C.J., Miedaner, A., Raebiger, J.W., DuBois, D.L., Organometallics 23, 511 (2004).CrossRefGoogle Scholar
44.Berning, D.E., Miedaner, A., Curtis, C.J., Noll, B.C., DuBois, M.R., DuBois, D.L., Organometallics 20, 1832 (2001).CrossRefGoogle Scholar
45.Miedaner, A., Raebiger, J.W., Curtis, C.J., Miller, S.M., DuBois, D.L., Organometallics 23, 2670 (2004).CrossRefGoogle Scholar
46.Nimlos, M.R., Chang, C.H., Curtis, C.J., Miedaner, A., Pilath, H.M., DuBois, D.L., Organometallics 27, 2715 (2008).CrossRefGoogle Scholar
47.Kristjánsdóttir, S.S., Norton, J.R., in Transition Metal Hydrides: Recent Advances in Theory and Experiment, Dedieu, A., Ed. (VCH, New York, 1991), pp. 309359.Google Scholar
48.Curtis, C.J., Miedaner, A., Ellis, W.W., DuBois, D.L., J. Am. Chem. Soc. 124, 1918 (2002).CrossRefGoogle Scholar
49.Yang, J.Y., Bullock, R.M., Shaw, W.J., Twamley, B., Fraze, K., Rakowski DuBois, M., DuBois, D.L., J. Am. Chem. Soc. 131, 5935 (2009).CrossRefGoogle Scholar
50.Wilson, A.D., Fraze, K., Twamley, B., Miller, S.M., DuBois, D.L., DuBois, M.R., J. Am. Chem. Soc. 130, 1061 (2008).CrossRefGoogle Scholar
51.Peters, J.W., Lanzilotta, W.N., Lemon, B.J., Seefeldt, L.C., Science 282, 1853 (1998).CrossRefGoogle Scholar
52.Montet, Y., Amara, P., Volbeda, A., Vernède, X., Hatchikian, E.C., Field, M.J., Frey, M., Fontecilla-Camps, J.C., Nat. Struct. Biol. 4, 523 (1997).CrossRefGoogle Scholar
53.Jacobsen, G.M., Yang, J.Y., Twamley, B., Wilson, A.D., Bullock, R.M., Rakowski DuBois, M., DuBois, D.L., Energy Environ. Sci. 1, 167 (2008).CrossRefGoogle Scholar
54.Berben, L.A., Peters, J.C., Chem. Commun. 46, 398 (2010).CrossRefGoogle Scholar
55.Le Goff, A., Artero, V., Jousselme, B., Tran, P.-D., Guillet, N., Métayé, R., Fihri, A., Palacin, S., Fontecave, M., Science 326, 1384 (2009).CrossRefGoogle Scholar