Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-qpj69 Total loading time: 0.51 Render date: 2021-03-06T00:24:52.392Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Flows in one-dimensional and two-dimensional carbon nanochannels: Fast and curious

Published online by Cambridge University Press:  12 April 2017

Mainak Majumder
Affiliation:
Monash University, Australia; mainak.majumder@monash.edu
Alessandro Siria
Affiliation:
Laboratoire de Physique Statistique de l’Ecole Normale Supérieure, France; alessandro.siria@lps.ens.fr
Lydéric Bocquet
Affiliation:
École Normale Supérieure, France; lyderic.bocquet@ens.fr
Get access

Abstract

Carbon materials exist in a large number of allotropic forms and exhibit a wide range of physical and chemical properties. From the perspective of fluidics, particularly within the confines of the nanoscale afforded by one-dimensional carbon nanotubes (CNTs) and two-dimensional graphene structures, many unique properties have been discovered. However, other questions, such as the link between electronic states and hydrodynamics and accurate model predictions of transport, remain unanswered. Theoretical studies, experiments in large-scale ensembles of CNTs and stacked graphene sheets, and precise measurements at the single-pore and single-molecule level have helped in our understanding. These activities have led to explosive growth in the field, now known as carbon nanofluidics. The ability to produce membranes and devices from fluid phases of graphene oxide, which retain these special properties in molecular-scale flow channels, promises realization of applications in the near term.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Hummer, G., Rasaiah, J.C., Noworyta, J.P., Nature 414, 188 (2001).CrossRef
Skoulidas, A.I., Ackerman, D.M., Johnson, J.K., Sholl, D.S., Phys. Rev. Lett. 89, 185901 (2002).CrossRef
Hinds, B.J., Chopra, N., Rantell, T., Andrews, R., Gavalas, V., Bachas, L.G., Science 303, 62 (2004).CrossRef
Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., Bakajin, O., Science 312, 1034 (2006).CrossRef
Majumder, M., Chopra, N., Andrews, R., Hinds, B.J., Nature 438, 44 (2005).CrossRef
Majumder, M., Chopra, N., Hinds, B.J., ACS Nano 5, 3867 (2011).CrossRef
Joseph, S., Aluru, N.R., Nano Lett. 8, 452 (2008).CrossRef
Thomas, J.A., McGaughey, A.J.H., Nano Lett. 8, 2788 (2008).CrossRef
Falk, K., Sedlmeier, F., Joly, L., Netz, R.R., Bocquet, L., Nano Lett. 10, 4067 (2010).CrossRef
Bocquet, L., Charlaix, E., Chem. Soc. Rev. 39, 1073 (2010).CrossRef
Lee, C.Y., Choi, W., Han, J.-H., Strano, M.S., Science 329, 1320 (2010).CrossRef
Ago, H., Kugler, T., Cacialli, F., Salanech, W.R., Shafer, M.S.P., Windle, A.H., Friend, R.H., J. Phys. Chem. B 103, 8116 (1999).CrossRef
Liu, H., He, J., Tang, J., Liu, H., Pang, P., Cao, D., Krstic, P., Lindsay, J.S., Nuckolls, C., Science 327, 64 (2010).CrossRef
Liu, L., Yang, C., Zhao, K., Li, J., Wu, H.-C., Nat. Commun. 4, 2989 (2013).
Geng, J., Kim, K., Zhang, J., Escalada, A., Tunuguntla, R., Comolli, L.R., Allen, F.I., Shnyrova, A.V., Cho, K.R., Munoz, D., Wang, Y.M., Grigoropoulos, C.P., Ajo-Franklin, C.M., Frolov, V.A., Noy, A., Nature 514, 612 (2014).CrossRef
Siria, A., Poncharal, P., Biance, A.-L., Fulcrand, R., Blase, X., Purcell, S.T., Bocquet, L., Nature 494, 455 (2013).CrossRef
Secchi, E., Marbach, S., Niguès, A., Stein, D., Siria, A., Bocquet, L., Nature 537, 210 (2016).CrossRef
Secchi, E., Niguès, A., Jubin, L., Siria, A., Bocquet, L., Phys. Rev. Lett. 116, 154501 (2016).CrossRef
Guo, S., Buchsbaum, S.F., Meshot, E.R., Davenport, M.W., Siwy, Z., Fornasiero, F., Biophys. J. 108, 175a (2015).CrossRef
Feng, J., Graf, M., Liu, K., Ovchinnikov, D., Dumcenco, D., Heiranian, M., Nandigana, V., Aluru, N.R., Kis, A., Radenovic, A., Nature 536, 197 (2016).CrossRef
Tocci, G., Joly, L., Michaelides, A., Nano Lett. 14, 6872 (2014).CrossRef
Grosjean, B., Pean, C., Siria, A., Bocquet, L., Vuilleumier, R., Bocquet, M.-L., J. Phys. Chem. Lett. 7, 4695 (2016).CrossRef
Werber, J.R., Deshmukh, A., Elimelech, M., Environ. Sci. Technol. Lett. 3, 112 (2016).CrossRef
O’Hern, S.C., Boutilier, M.S.H., Idrobo, J.C., Song, Y., Kong, J., Laoui, T., Atieh, M., Karnik, R., Nano Lett. 14, 1234 (2014).CrossRef
Surwade, S.P., Smirnov, S.N., Vlassiouk, I.V., Unocic, R.R., Veith, G.M., Dai, S., Mahurin, S.M., Nat. Nanotechnol. 10, 459 (2015).CrossRef
Hu, S., Lozada-Hidalgo, M., Wang, F.C., Mishchenko, A., Schedin, F., Nair, R.R., Hill, E.W., Boukhvalov, D.W., Katsnelson, M.I., Dryfe, R.A.W., Grigorieva, I.V., Wu, H.A., Geim, A.K., Nature 516, 227 (2014).CrossRef
Celebi, K., Buchheim, J., Wyss, R.M., Droudian, A., Gasser, P., Shorubalko, I., Kye, J.L., Lee, C., Park, H.G., Science 344, 289 (2014).CrossRef
Radha, B., Esfandiar, A., Wang, F.C., Rooney, A.P., Gopinadhan, K., Keerthi, A., Mishchenko, A., Janardanan, A., Blake, P., Fumagalli, L., Lozada-Hidalgo, M., Garaj, S., Haigh, S.J., Grigorieva, I.V., Wu, H.A., Geim, A.K., Nature 538, 222 (2016).CrossRef
Gravelle, S., Ybert, C., Bocquet, L., Joly, L., Phys. Rev. E 93, 033123 (2016).CrossRef
Raidongia, K., Huang, J., J. Am. Chem. Soc. 134, 16528 (2012).CrossRef
Kim, J.E., Han, T.H., Lee, S.H., Kim, J.Y., Ahn, C.W., Yun, J.M., Kim, S.O., Angew. Chem. Int. Ed. Engl. 50, 3043 (2011).CrossRef
Tkacz, R., Oldenbourg, R., Mehta, S.B., Miansari, M., Verma, A., Majumder, M., Chem. Commun. 50, 6668 (2014).CrossRef
Akbari, A., Sheath, P., Martin, S.T., Shinde, D.B., Shaibani, M., Chakraborty-Banerjee, P., Tkacz, R., Bhattacharyya, D., Majumder, M., Nat. Commun. 7, 10891 (2016).CrossRef
Xia, S., Ni, M., Zhu, T., Zhao, Y., Li, N., Desalination 371, 78 (2015).CrossRef
Joshi, R.K., Carbone, P., Wang, F.C., Kravets, V.G., Su, Y., Grigorieva, I.V., Wu, H.A., Geim, A.K., Nair, R.R., Science 343, 752 (2014).CrossRef
Kim, H.W., Yoon, H.W., Yoon, S.-M., Yoo, B.M., Ahn, B.K., Cho, Y.H., Shin, H.J., Yang, H., Paik, U., Kwon, S., Choi, J.Y., Park, H.B., Science 342, 91 (2013).CrossRef
Nair, R.R., Wu, H.A., Jayaram, P.N., Grigorieva, I.V., Geim, A.K., Science 335, 442 (2012).CrossRef
Hu, M., Mi, B., Environ. Sci. Technol. 47, 3715 (2013).CrossRef
Amadei, C.A., Vecitis, C.D., J. Phys. Chem. Lett. 7, 3791 (2016).CrossRef
Yoshida, H., Bocquet, L., J. Chem. Phys. 144, 234701 (2016).CrossRef
Martin, S.T., Neild, A., Majumder, M., APL Mater. 2, 092803 (2014).CrossRef
Martin, S., Akbari, A., Chakraborty Banerjee, P., Neild, A., Majumder, M., Phys. Chem. Chem. Phys. 18, 32185 (2016).CrossRef
Gravelle, S., Yoshida, H., Joly, L., Ybert, C., Bocquet, L., J. Chem. Phys. 145, 124708 (2016).CrossRef
Huang, K., Liu, G., Lou, Y., Dong, Z., Shen, J., Jin, W., Angew. Chem. Int. Ed. 53, 6929 (2014).CrossRef
Shaibani, M., Akbari, A., Sheath, P., Easton, C.D., Chakraborty Banerjee, P., Konstas, K., Fakhfouri, A., Barghamadi, M., Musameh, M.M., Best, A.S., Rüther, T., Mahon, P.J., Hill, M.R., Hollenkamp, A.F., Majumder, M., ACS Nano 10, 7768 (2016).CrossRef

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 33
Total number of PDF views: 570 *
View data table for this chart

* Views captured on Cambridge Core between 12th April 2017 - 6th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Flows in one-dimensional and two-dimensional carbon nanochannels: Fast and curious
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Flows in one-dimensional and two-dimensional carbon nanochannels: Fast and curious
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Flows in one-dimensional and two-dimensional carbon nanochannels: Fast and curious
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *