Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-03T18:38:59.663Z Has data issue: false hasContentIssue false

Germanium Nanostructures on Silicon Observed by Scanning Probe Microscopy

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Scanning tunneling microscopy and noncontact atomic force microscopy have been used to observe germanium growth on Si(001) and Si(111). The atomically resolved images provide invaluable information on heteroepitaxial film growth from the viewpoints of both industrial application and basic science. We briefly review the history of characterizing heteroepitaxial elemental semiconductor systems by means of scanning probe microscopy (SPM), where the Stranski–Krastanov growth mode can be observed on the atomic scale:the detailed phase transition from layer-by-layer growth to three-dimensional cluster growth was elucidated by the use of SPM. In addition, we comment on the potential of SPM for examining the spectroscopic aspects of heteroepitaxial film growth, through the use of SPM tips with well-defined facets.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1For example, see Wiesendanger, R., Scanning Probe Microscopy and Spectroscopy: Methods and Applications (Cambridge University Press, Cambridge, UK, 1994).CrossRefGoogle Scholar
2Binnig, G., Rohrer, H., Gerber, Ch., and Weibel, E., Phys. Rev. Lett. 49 (1982) p.57.CrossRefGoogle Scholar
3Giessibl, F.J., Science 267 (1995) p.68.CrossRefGoogle Scholar
4Morita, S., Wiesendanger, R., and Meyer, E., eds., Noncontact Atomic Force Microscopy (Springer-Verlag, Berlin, 2002).CrossRefGoogle Scholar
5Reichling, M. and Barth, C., Phys. Rev. Lett. 83 (1999) p.768.CrossRefGoogle Scholar
6Bauer, E., Rep. Prog. Phys. 57 (1994) p.895.CrossRefGoogle Scholar
7For example, see Tomitori, M., Iwawaki, F., Hirano, N., Katsuki, F., and Nishikawa, O., J. Vac. Sci. Technol., A 8 (1990) p.222.CrossRefGoogle Scholar
8For example, see Ratsch, C. and Zangill, A., Surf. Sci. 293 (1993) p.123.CrossRefGoogle Scholar
9Voigtländer, B., Surf. Sci. Rep. 43 (2001) p.127.CrossRefGoogle Scholar
10Becker, R. and Wolkow, R., in Scanning Tunneling Microscopy, Chapter 5, edited by Stroscio, J.A. and Kaiser, W.J. (Academic Press, San Diego, 1993) p.149.Google Scholar
11Mo, Y.-W., Savage, D.E., Swartzentruber, B.S., and Lagally, M.G., Phys. Rev. Lett. 65 (1990) p.1020.CrossRefGoogle Scholar
12Iwawaki, F., Tomitori, M., and Nishikawa, O., Surf. Sci. Lett. 253 (1991) p.L411.Google Scholar
13Iwawaki, F., Tomitori, M., and Nishikawa, O., Surf. Sci. 266 (1992) p.285.CrossRefGoogle Scholar
14Iwawaki, F., Tomitori, M., and Nishikawa, O., Ultramicroscopy 42–44 (1992) p.902.CrossRefGoogle Scholar
15Köhler, U., Jusko, O., Müller, B., Hoegen, M. Horn-von, and Pook, M., Ultramicroscopy 42–44 (1992) p.832.CrossRefGoogle Scholar
16Tomitori, M., Watanabe, K., Kobayashi, M., Iwawaki, F., and Nishikawa, O., J.Vac. Sci. Technol., B 12 (1994) p.2022.CrossRefGoogle Scholar
17Tomitori, M., Watanabe, K., Kobayashi, M., and Nishikawa, O., Appl. Surf. Sci. 76/77 (1994) p.322.CrossRefGoogle Scholar
18Knall, J. and Pethica, J.B., Surf. Sci. 265 (1992) p.156.CrossRefGoogle Scholar
19Wolkow, R.A., Phys. Rev. Lett. 68 (1992) p.2636.CrossRefGoogle Scholar
20Tomitori, M., Watanabe, K., Kobayashi, M., and Nishikawa, O., Surf. Sci. 301 (1994) p. 214.CrossRefGoogle Scholar
21Fujikawa, Y., Akiyama, K., Nagao, T., Sakurai, T., Lagally, M.G., Hashimoto, T., Morikawa, Y., and Terakura, K., Phy. Rev. Lett. 88 176101–1 (2002).CrossRefGoogle Scholar
22Hashimoto, T., Morikawa, Y., Fujikawa, Y., Sakurai, T., Lagally, M.G., and Terakura, K., Surf. Sci. 513 (2002) p.L445.CrossRefGoogle Scholar
23Medeiros-Ribeiro, G., Bratkovski, A.M., Kamins, T.I., Ohlberg, D.A.A., and Williams, R.S., Science 279 (1998) p.353.CrossRefGoogle Scholar
24Ross, F.M., Tromp, R.M., and Reuter, M.C., Science 286 (1999) p.1931.CrossRefGoogle Scholar
25Arai, T. and Tomitori, M., Appl. Surf. Sci. 188 (2002) p.292.CrossRefGoogle Scholar
26Takayanagi, K., Tanishiro, Y., Takahashi, M., and Takahashi, S., J. Vac. Sci. Technol., A3 (1985) p.1502.CrossRefGoogle Scholar
27Arai, T. and Tomitori, M., Jpn. J. Appl. Phys., Part 1 39 (2000) p.3753.CrossRefGoogle Scholar
28Arai, T. and Tomitori, M., Appl. Surf. Sci. 157 (2000) p.207.CrossRefGoogle Scholar
29Arai, T. and Tomitori, M., Appl. Phys. A 72 (2001) p.S51.CrossRefGoogle Scholar
30Morita, S. and Sugawara, Y., in Nanotechnol-ogy and Nano-Interface Controlled Electronic Devices, Chapter 21, edited by Iwamoto, M., Kaneko, K. and Mashiko, S. (Elsevier, Amsterdam, 2002) p. 431.Google Scholar
31Kawamura, M., Paul, N., Cherepanov, V., and Voigtländer, B., Phys. Rev. Lett. 91 096102 (2003).CrossRefGoogle Scholar
32Arai, T. and Tomitori, M., Jpn. J. Appl. Phys., Part 1 36 (1997) p.3855.CrossRefGoogle Scholar
33Arai, T. and Tomitori, M., J.Vac. Sci. Technol., B 18 (2000) p.648.CrossRefGoogle Scholar