Skip to main content Accessibility help
Hostname: page-component-7ccbd9845f-dxj8b Total loading time: 0.539 Render date: 2023-01-30T16:28:51.901Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Article contents

Physicochemical regulation of biofilm formation

Published online by Cambridge University Press:  18 May 2011

Lars D. Renner
University of Wisconsin-Madison, WI 53706, USA;
Douglas B. Weibel
University of Wisconsin-Madison, WI 53706, USA;
Get access


This article reviews the physical and chemical constraints of environments on biofilm formation. We provide a perspective on how materials science and engineering can address fundamental questions and unmet technological challenges in this area of microbiology, such as biofilm prevention. Specifically, we discuss three factors that impact the development and organization of bacterial communities. (1) Physical properties of surfaces regulate cell attachment and physiology and affect early stages of biofilm formation. (2) Chemical properties influence the adhesion of cells to surfaces and their development into biofilms and communities. (3) Chemical communication between cells attenuates growth and influences the organization of communities. Mechanisms of spatial and temporal confinement control the dimensions of communities and the diffusion path length for chemical communication between biofilms, which, in turn, influences biofilm phenotypes. Armed with a detailed understanding of biofilm formation, researchers are applying the tools and techniques of materials science and engineering to revolutionize the study and control of bacterial communities growing at interfaces.

Research Article
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1.Hall-Stoodley, L., Costerton, J.W., Stoodley, P., Nat. Rev. Microbiol. 2 (2), 95 (2004).CrossRefGoogle Scholar
2.Flemming, H.C., Wingender, J., Nat. Rev. Microbiol. 8 (9), 623 (2010).CrossRefGoogle Scholar
3.Dunne, W.M. Jr., Clin. Microbiol. Rev. 15 (2), 155 (2002).CrossRefGoogle Scholar
4.Neufeld, K.A., Foster, J.A., J. Psychiatry Neurosci. 34 (3), 230 (2009).Google Scholar
5.Turnbaugh, P.J., Ley, R.E., Hamady, M., Fraser-Liggett, C.M., Knight, R., Gordon, J.I., Nature 449 (7164), 804 (2007).CrossRefGoogle Scholar
6.Bryers, J.D., Biotechnol. Bioeng. 100 (1), 1 (2008).CrossRefGoogle Scholar
7.Gristina, A.G., Science 237 (4822), 1588 (1987).CrossRefGoogle Scholar
8.Bullitt, E., Makowski, L., Nature 373 (6510), 164 (1995).CrossRefGoogle Scholar
9.Thomas, W.E., Nilsson, L.M., Forero, M., Sokurenko, E.V., Vogel, V., Mol. Microbiol. 53 (5), 1545 (2004).CrossRefGoogle Scholar
10.Loeb, G.I., Neihof, R.A., Applied Chemistry at Protein Interfaces, Advances in Chemistry (American Chemical Society, 1975), 145, pp. 319335.CrossRefGoogle Scholar
11.Lutolf, M.P., Hubbell, J.A., Nat. Biotechnol. 23 (1), 47 (2005).CrossRefGoogle Scholar
12.Borlee, B.R., Goldman, A.D., Murakami, K., Samudrala, R., Wozniak, D.J., Parsek, M.R., Mol. Microbiol. 75 (4), 827 (2010).CrossRefGoogle Scholar
13.Harmsen, M., Yang, L., Pamp, S.J., Tolker-Nielsen, T., FEMS Immunol. Med. Microbiol. 59 (3), 253 (2010).CrossRefGoogle Scholar
14.Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R., Lappin-Scott, H.M.. , Annu. Rev. Microbiol. 41, 435 (1987).CrossRefGoogle Scholar
15.Ista, L.K., Mendez, S., Balamurugan Sreelatha, S., Balamurugan, S., Rama Rao Venkata, G., Lopez Gabriel, P., Smart Coatings II, ACS Symposium Series (American Chemical Society, 2009), 1002, pp. 95110.CrossRefGoogle Scholar
16.Bhushan, B., Jung, Y.C., Koch, K., Philos. Trans. R. Soc. London, Ser. A 367 (1894), 1631 (2009).CrossRefGoogle Scholar
17.Guo, Z., Liu, W., Su, B.L., J. Colloid Interface Sci. 353 (2), 335 (2011).CrossRefGoogle Scholar
18.Bruellhoff, K., Fiedler, J., Moller, M., Groll, J., Brenner, R.E., Int. J. Artif. Organs 33 (9), 646 (2010).CrossRefGoogle Scholar
19.Lewis, K., Klibanov, A.M., Trends Biotechnol. 23 (7), 343 (2005).CrossRefGoogle Scholar
20.Zhang, B., Lalani, R., Liu, L., 2010 Annual Meeting of the Society for Biomaterials (2010).Google Scholar
21.McClaine, J.W., Ford, R.M., Appl. Environ. Microbiol. 68 (3), 1280 (2002).CrossRefGoogle Scholar
22.Vigeant, M.A., Ford, R.M., Wagner, M., Tamm, L.K., Appl. Environ. Microbiol. 68 (6), 2794 (2002).CrossRefGoogle Scholar
23.Israelachvili, J., Intermolecular and Surface Forces: With Applications to Colloidal and Biological Systems (Academic Press, NY, 1985).Google Scholar
24.Derjaguin, B.V., Landau, L., Acta Phys. Chim. 14, 633 (1941).Google Scholar
25.Lichter, J.A., Thompson, M.T., Delgadillo, M., Nishikawa, T., Rubner, M.F., Van Vliet, K.J., Biomacromolecules. 9 (6), 1571 (2008).CrossRefGoogle Scholar
26.Verwey, E.J.W., Overbeek, J.T.G., Theory of Stability of Lyophobic Colloids (Elsevier, NY, 1948).Google Scholar
27.Ohshima, H., Colloids Surf. A 103 (3), 249 (1995).CrossRefGoogle Scholar
28.Soni, K.A., Balasubramanian, A.K., Beskok, A., Pillai, S.D., Curr. Microbiol. 56 (1), 93 (2008).CrossRefGoogle Scholar
29.Katsikogianni, M.G., Missirlis, Y.F., Acta Biomater. 6 (3), 1107 (2010).CrossRefGoogle Scholar
30.Hong, Y., Brown, D.G., Langmuir 24 (9), 5003 (2008).CrossRefGoogle Scholar
31.Pringle, J.H., Fletcher, M., Appl. Environ. Microbiol. 45 (3), 811 (1983).Google Scholar
32.Norde, W., Colloids Surf. B 61 (1), 1 (2008).CrossRefGoogle Scholar
33.Absolom, D.R., Lamberti, F.V., Policova, Z., Zingg, W., van Oss, C.J., Neumann, A.W., Appl. Environ. Microbiol. 46 (1), 90 (1983).Google Scholar
34.Davidson, C.A., Lowe, C.R., J. Mol. Recognit. 17 (3), 180 (2004).CrossRefGoogle Scholar
35.Ista, L.K., Fan, H., Baca, O., Lopez, G.P., FEMS Microbiol. Lett. 142 (1), 59 (1996).CrossRefGoogle Scholar
36.Heistad, A., Scott, T., Skaarer, A.M., Seidu, A.R., Hanssen, J.F., Stenstrom, T.A., Water Sci. Technol. 60 (2), 399 (2009).CrossRefGoogle Scholar
37.Hyde, F.W., Alberg, M., Smith, K., J. Ind. Microbiol. Biotechnol. 19 (2), 142 (1997).CrossRefGoogle Scholar
38.Anselme, K., Davidson, P., Popa, A.M., Giazzon, M., Liley, M., Ploux, L., Acta Biomater. 6 (10), 3824 (2010).CrossRefGoogle Scholar
39.Xia, Y., Whitesides, G.M., Angew. Chem. Int. Ed. 37 (5), 550 (1998).3.0.CO;2-G>CrossRefGoogle Scholar
40.Truong, V.K., Rundell, S., Lapovok, R., Estrin, Y., Wang, J.Y., Berndt, C.C., Barnes, D.G., Fluke, C.J., Crawford, R.J., Ivanova, E.P., Appl. Microbiol. Biotechnol. 83 (5), 925 (2009).CrossRefGoogle Scholar
41.Machado, M.C., Cheng, D., Tarquinio, K.M., Webster, T.J., Pediatr. Res. 67 (5), 500 (2010).CrossRefGoogle Scholar
42.Young, K.D., Microbiol. Mol. Biol. Rev. 70 (3), 660 (2006).CrossRefGoogle Scholar
43.Copeland, M.F., Weibel, D.B., Soft Matter 5 (6), 1174 (2009).CrossRefGoogle Scholar
44.Hoffman-Kim, D., Mitchel, J.A., Bellamkonda, R.V., Annu. Rev. Biomed. Eng. 12, 203 (2010).CrossRefGoogle Scholar
45.Volle, C.B., Ferguson, M.A., Aidala, K.E., Spain, E.M., Nunez, M.E., Colloids Surf., B 67 (1), 32 (2008).CrossRefGoogle Scholar
46.Hochbaum, A.I., Aizenberg, J., Nano Lett. 10 (9), 3717 (2010).CrossRefGoogle Scholar
47.Chung, K.K., Schumacher, J.F., Sampson, E.M., Burne, R.A., Antonelli, P.J., Brennan, A.B., Biointerphases 2 (2), 89 (2007).CrossRefGoogle Scholar
48.Schumacher, J.F., Long, C.J., Callow, M.E., Finlay, J.A., Callow, J.A., Brennan, A.B., Langmuir 24 (9), 4931 (2008).CrossRefGoogle Scholar
49.Campoccia, D., Montanaro, L., Agheli, H., Sutherland, D.S., Pirini, V., Donati, M.E., Arciola, C.R., Int. J. Artif. Organs 29 (6), 622 (2006).CrossRefGoogle Scholar
50.Qiu, Y., Zhang, N., An, Y.H., Wen, X., Int. J. Artif. Organs 30 (9), 828 (2007).CrossRefGoogle Scholar
51.Ista, L.K., Perez-Luna, V.H., Lopez, G.P., Appl. Environ. Microbiol. 65 (4), 1603 (1999).Google Scholar
52.Ista, L.K., Mendez, S., Lopez, G.P., Biofouling 26 (1), 111 (2010).CrossRefGoogle Scholar
53.Bosker, W.T.E., Patzsch, K., Stuart, M.A.C., Norde, W., Soft Matter 3 (6), 754 (2007).CrossRefGoogle Scholar
54.Patel, J.D., Ebert, M., Ward, R., Anderson, J.M., J. Biomed. Mater. Res. Part A 80 (3), 742 (2007).CrossRefGoogle Scholar
55.Haldar, J., An, D., Alvarez de Cienfuegos, L., Chen, J., Klibanov, A.M., Proc. Natl. Acad. Sci. U.S.A. 103 (47), 17667 (2006).CrossRefGoogle Scholar
56.Wong, S.Y., Li, Q., Veselinovic, J., Kim, B.S., Klibanov, A.M., Hammond, P.T., Biomaterials 31 (14), 4079 (2010).CrossRefGoogle Scholar
57.Cheng, G., Xue, H., Zhang, Z., Chen, S., Jiang, S., Angew. Chem. Int. Ed. 47 (46), 8831 (2008).CrossRefGoogle Scholar
58.Burton, E.A., Simon, K.A., Hou, S., Ren, D., Luk, Y.Y., Langmuir 25 (3), 1547 (2009).CrossRefGoogle Scholar
59.Rodrigues, D.F., Elimelech, M., Biofouling 25 (5), 401 (2009).CrossRefGoogle Scholar
60.Carnes, E.C., Lopez, D.M., Donegan, N.P., Cheung, A., Gresham, H., Timmins, G.S., Brinker, C.J., Nat. Chem. Biol. 6 (1), 41 (2010).CrossRefGoogle Scholar
61.Hornemann, J.A., Lysova, A.A., Codd, S.L., Seymour, J.D., Busse, S.C., Stewart, P.S., Brown, J.R., Biomacromolecules 9 (9), 2322 (2008).CrossRefGoogle Scholar
62.Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., Whitesides, G.M., Chem. Rev. 105 (4), 1103 (2005).CrossRefGoogle Scholar
63.Ulman, A., Chem. Rev. 96 (4), 1533 (1996).CrossRefGoogle Scholar
64.Hou, S., Burton, E.A., Wu, R.L., Luk, Y.Y., Ren, D., Chem. Commun. (Camb.) (10), 1207 (2009).CrossRefGoogle Scholar
65.Buck, M.E., Breitbach, A.S., Belgrade, S.K., Blackwell, H.E., Lynn, D.M., Biomacromolecules 10 (6), 1564 (2009).CrossRefGoogle Scholar Gennes, P.G., Adv. Colloid Interface Sci. 27, 189 (1987).CrossRefGoogle Scholar
67.Jiang, X., Bruzewicz, D.A., Thant, M.M., Whitesides, G.M., Anal. Chem. 76 (20), 6116 (2004).CrossRefGoogle Scholar
68.Currie, E.P., Norde, W., Cohen Stuart, M.A., Adv. Colloid Interface Sci. 100102, 205 (2003).CrossRefGoogle Scholar
69.Adout, A., Kang, S., Asatekin, A., Mayes, A.M., Elimelech, M., Environ. Sci. Technol. 44 (7), 2406 (2010).CrossRefGoogle Scholar
70.Hsu, B.B., Ouyang, J., Wong, S.Y., Hammond, P.T., Klibanov, A.M., Biotechnol. Lett. 33 (2), 411 (2011).CrossRefGoogle Scholar
71.Yang, L., Gordon, V.D., Trinkle, D.R., Schmidt, N.W., Davis, M.A., DeVries, C., Som, A., Cronan, J.E., Tew, G.N., Wong, G.C., Proc. Natl. Acad. Sci. U.S.A. 105 (52), 20595 (2008).CrossRefGoogle Scholar
72.Yang, L., Gordon, V.D., Mishra, A., Som, A., Purdy, K.R., Davis, M.A., Tew, G.N., Wong, G.C., J. Am. Chem. Soc. 129 (40), 12141 (2007).CrossRefGoogle Scholar
73.Vanoyan, N., Walker, S.L., Gillor, O., Herzberg, M., Langmuir 26 (14), 12089 (2010).CrossRefGoogle Scholar
74.Siboni, N., Lidor, M., Kramarsky-Winter, E., Kushmaro, A., FEMS Microbiol. Lett. 274 (1), 24 (2007).CrossRefGoogle Scholar
75.Hetrick, E.M., Schoenfisch, M.H., Chem. Soc. Rev. 35 (9), 780 (2006).CrossRefGoogle Scholar
76.Breitbach, A.S., Broderick, A.H., Jewell, C.M., Gunasekaran, S., Lin, Q., Lynn, D.M., Blackwell, H.E., Chem. Commun. (Camb.) 47 (1), 370 (2011).CrossRefGoogle Scholar
77.Bassler, B.L., Losick, R., Cell 125 (2), 237 (2006).CrossRefGoogle Scholar
78.Kim, H.J., Du, W., Ismagilov, R.F., Integr. Biol. (Camb.) 3 (2), 126 (2011).CrossRefGoogle Scholar
79.Kim, H.J., Boedicker, J.Q., Choi, J.W., Ismagilov, R.F., Proc. Natl. Acad. Sci. U.S.A. 105 (47), 18188 (2008).CrossRefGoogle Scholar
80.Eun, Y.J., Weibel, D.B., Langmuir 25 (8), 4643 (2009).CrossRefGoogle Scholar
81.Flickinger, S.T., Copeland, M.F., Downes, E.M., Braasch, A.T., Tuson, H.H., Eun, Y.J., Weibel, D.B.. J. Am. Chem. Soc., in press (2011).Google Scholar
82.Boedicker, J.Q., Vincent, M.E., Ismagilov, R.F., Angew. Chem. Int. Ed. 48 (32), 5908 (2009).CrossRefGoogle Scholar
83.Vincent, M.E., Liu, W., Haney, E.B., Ismagilov, R.F., Chem. Soc. Rev. 39 (3), 974 (2010).CrossRefGoogle Scholar
84.Weibel, D.B., Diluzio, W.R., Whitesides, G.M., Nat. Rev. Microbiol. 5 (3), 209 (2007).CrossRefGoogle Scholar
85.McCarter, L., Silverman, M., Mol. Microbiol. 4 (7), 1057 (1990).CrossRefGoogle Scholar
86.Pruss, B.M., Besemann, C., Denton, A., Wolfe, A.J., J. Bacteriol. 188 (11), 3731 (2006).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Physicochemical regulation of biofilm formation
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Physicochemical regulation of biofilm formation
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Physicochemical regulation of biofilm formation
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *