Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-w9nzq Total loading time: 0.194 Render date: 2021-07-30T11:36:38.394Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Polymer-Supported Membranes: Physical Models of Cell Surfaces

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The functional modification of solid surfaces with plasma membrane models has been drawing increasing attention as a straightforward strategy to bridge soft biological materials and hard inorganic materials. Planar model membranes can be deposited either directly on solid substrates (solid-supported membranes), or on ultrathin polymer supports (polymer-supported membranes) that mimic the generic role of the extracellular matrix and the cell surface. The first part of this review provides an overview of advances in the fabrication of polymer-supported membranes. The middle section describes how such thin polymer interlayers can physically modulate the membrane–substrate contact. The last section introduces several methods to localize membranes and membrane proteins. Finally, some ideas are presented on combining supported membrane concepts with semiconductor technology toward applications in materials science.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Sackmann, E., in Handbook of Biological Physics, edited by Lipowsky, R. and Sack-mann, E. (Elsevier Science, Amsterdam, 1995) p.213.Google Scholar
2Brian, A.A. and McConnell, H.M., Proc. Natl. Acad. Sci. USA 81 (1984) p.6159.CrossRefGoogle Scholar
3Chan, P., Lawrence, M.B., Dustin, M.L., Ferguson, L.M., Golan, D.E., and Springer, T.A., J. Cell Biol. 10 (1991) p.245.CrossRefGoogle Scholar
4Erb, E.-M., Tangemann, K., Bohrmann, B., Müller, B., and Engel, J., Biochemistry 36 (1997) p.7395.CrossRefGoogle Scholar
5Kloboucek, A., Behrisch, A., Faix, J., and Sackmann, E., Biophys. J. 77 (1999) p.2311.CrossRefGoogle Scholar
6Qi, S.Y., Groves, J.T., and Chakraborty, A.K., Proc. Natl. Acad. Sci. USA 98 (2001) p.6548.CrossRefGoogle Scholar
7Grakoui, A., Bromley, S.K., Sumen, C., Davis, M.M., Shaw, A.S., Allen, P.M., and Dustin, M.L., Science 285 (1999) p.221.CrossRefGoogle Scholar
8Groves, J.T. and Dustin, M.L., J. Immunol. Methods 278 (2003) p.19.CrossRefGoogle Scholar
9Sackmann, E. and Tanaka, M., Trends Biotech-nol. 18 (2000) p.58.CrossRefGoogle Scholar
10Tamm, L.K. and McConnell, H.M., Biophys. J. 47 (1985) p.105.CrossRefGoogle Scholar
11Sackmann, E., Science 271 (1996) p.43.CrossRefGoogle Scholar
12Groves, J.T. and Boxer, S.G., Acc. Chem. Res. 35 (2002) p.149.CrossRefGoogle Scholar
13Watts, T.H., Gaub, H.E., and McConnell, H.M., Nature 320 (1986) p.179.CrossRefGoogle Scholar
14Kalb, E., Frey, S., and Tamm, L.K., Biochim. Biophys. Acta 1103 (1992) p.307.CrossRefGoogle Scholar
15Tatulian, S.A., Hinterdorfer, P., Baber, G., and Tamm, L.K., EMBO J. 14 (1995) p.5514.Google Scholar
16Terrettaz, S., Stora, T., Duschl, C., and Vogel, H., Langmuir 9 (1993) p.1361.CrossRefGoogle Scholar
17Kjaer, K., Als-Nielsen, J., Helm, C.A., Laxhuber, L.A., and Mohwald, H., Phys. Rev. Lett. 58 (1987) p.2224.CrossRefGoogle Scholar
18Johnson, S.J., Bayerl, T.M., McDermott, D.C., Adam, G.W., Rennie, A.R., Thomas, R.K., and Sackmann, E., Biophys. J. 59 (1991) p.289.CrossRefGoogle Scholar
19Kalb, E., Engel, J., and Tamm, L.K., Biochemistry 29 (1990) p.1607.CrossRefGoogle Scholar
20Bruinsma, R., Behrisch, A., and Sackmann, E., Phys. Rev. E 61 (2000) p.4253.Google Scholar
21Sackmann, E. and Bruinsma, R.F., ChemPhysChem 3 (2002) p.262.3.0.CO;2-U>CrossRefGoogle Scholar
22Bayerl, T. M. and Bloom, M., Biophys. J. 58 (1990) p.357.CrossRefGoogle Scholar
23Lambacher, A. and Fromherz, P., Appl. Phys. A 63 (1996) p.207.CrossRefGoogle Scholar
24Tanaka, M. and Sackmann, E., Nature 437 (2005) p.656.CrossRefGoogle Scholar
25Knoll, W., Frank, C.W., Heibel, C., Nau-mann, R., Offenhäuser, A., Rühe, J., Schmidt, E.K., Shen, W.W., and Sinner, A., Rev. Mol. Biotechnol. 74 (2000) p.137.CrossRefGoogle Scholar
26Wagner, M.L. and Tamm, L.K., Biophys. J. 61 (2001) p.266.CrossRefGoogle Scholar
27Brochard-Wyart, F. and Gennes, P.G. de, Adv. Colloid Interface Sci. 39 (1992) p.1.CrossRefGoogle Scholar
28Derjaguin, B.V. and Churaev, N.V., Surface Forces (Consultants Bureau, New York, 1987).CrossRefGoogle Scholar
29Rehfeldt, F., Steitz, R., Armes, S.P., Gast, A.P., and Tanaka, M., J. Phys. Chem. B 110 (2006) p.9177.CrossRefGoogle Scholar
30Lang, H., Duschl, C., and Vogel, H., Langmuir 10 (1994) p.197.CrossRefGoogle Scholar
31Cornell, B.A., Braach-Maksvytis, V., King, L.G., Osman, P.D.J., Raguse, B., Wieczorek, L., and Pace, R.J., Nature 387 (1997) p.580.CrossRefGoogle Scholar
32Schiller, S.M., Naumann, R., Lovejoy, K., Kunz, H., and Knoll, W., Angew. Chem. Int. Ed. Engl. 42 (2003) p.208.CrossRefGoogle Scholar
33Wagner, M.L. and Tamm, L.K., Biophys. J. 79 (2000) p.1400.CrossRefGoogle Scholar
34Bunjes, N., Schmidt, E.K., Jonczyk, A., Rippmann, F., Beyer, D., Ringsdorf, H., Gräber, P., Knoll, W., and Naumann, R., Langmuir 13 (1997) p.6188.CrossRefGoogle Scholar
35Purrucker, O., Förtig, A., Jordan, R., and Tanaka, M., ChemPhysChem 5 (2004) p.327.CrossRefGoogle Scholar
36Purrucker, O., Förtig, A., Ludke, K., Jordan, R., and Tanaka, M., J.Am. Chem. Soc. 127 (2005) p.1258.CrossRefGoogle Scholar
37Goennenwein, S., Tanaka, M., Hu, B., Mo-roder, L., and Sackmann, E., Biophys. J. 85 (2003) p.646.CrossRefGoogle Scholar
38Saffman, P.G. and Delbruck, M., Proc. Natl. Acad. Sci. USA 72 (1975) p.3111.CrossRefGoogle Scholar
39Evans, E. and Sackmann, E., J. Fluid. Mech. 194 (1988) p.553.CrossRefGoogle Scholar
40Kühner, M., Tampé, R., and Sackmann, E., Biophys. J. 67 (1994) p.217.CrossRefGoogle Scholar
41Salafsky, J., Groves, J.T., and Boxer, S.G., Biochemistry 35 (1996) p.14773.CrossRefGoogle Scholar
42Tanaka, M., Kaufmann, S., Nissen, J., and Hochrein, M., Phys. Chem. Chem. Phys. 3 (2001) p.4091.CrossRefGoogle Scholar
43Tanaka, M., Wong, A.P., Rehfeldt, F., Tutus, M., and Kaufmann, S., J. Am. Chem. Soc. 126 (2004) p.3257.CrossRefGoogle Scholar
44Zhu, X., Graaf, J. De, Winnik, F.M., and Leckband, D., Langmuir 20 (2004) p.1459.CrossRefGoogle Scholar
45Lee, A.S., Butun, V., Vamvakaki, M., Armes, S.P., Pople, J.A., and Gast, A.P., Macromolecules 35 (2002) p.8540.CrossRefGoogle Scholar
46Springer, T.A., Annu. Rev. Physiol. 57 (1995) p.827.CrossRefGoogle Scholar
47Yang, T., Baryshnikova, O.K., Mao, H., Holden, M.A., and Cremer, P.S., J. Am. Chem. Soc. 125 (2003) p.4779.CrossRefGoogle Scholar
48Stelzle, M., Mielich, R., and Sackmann, E., Biophys. J. 63 (1992) p.1346.CrossRefGoogle Scholar
49Groves, J.T., Boxer, S.G., and Mc-Connell, H.M., Proc. Natl. Acad. Sci. USA 25 (1997) p.13390.CrossRefGoogle Scholar
50Groves, J.T., Wulfing, C., and Boxer, S.G., Bio-phys. J. 71 (1996) p.2716.Google Scholar
51Olson, D.J., Johnson, J.M., Partel, P.D., Shaqfeh, E.S.G., Boxer, S.G., and Fuller, G.G., Langmuir 17 (2001) p.7396.CrossRefGoogle Scholar
52Yoshina-Ishii, C. and Boxer, S.G., J. Am. Chem. Soc. 125 (2003) p.3696.CrossRefGoogle Scholar
53Oudenaarden, A. van and Boxer, S.G., Science 285 (1999) p.1046.CrossRefGoogle Scholar
54Groves, J.T., Ulman, N., and Boxer, S.G., Science 275 (1997) p.651.CrossRefGoogle Scholar
55Groves, J.T., Mahal, L.K., and Bertozzi, C.R., Langmuir 17 (2001) p.5129.CrossRefGoogle Scholar
56Morigaki, K., Baumgart, T., Offenhausser, A., and Knoll, W., Ang. Chem. Int. Ed. 40 (2001) p.172.3.0.CO;2-G>CrossRefGoogle Scholar
57Yee, C.K., Amweg, M.L., and Parikh, A.N., J.Am. Chem. Soc. 126 (2004) p.13962.CrossRefGoogle Scholar
58Hovis, J.S. and Boxer, S.G., Langmuir 16 (2000) p.894.CrossRefGoogle Scholar
59Sapuri, A.R., Baksh, M.M., and Groves, J.T., Langmuir 19 (2003) p.1606.CrossRefGoogle Scholar
60Kung, L.A., Kam, L., Hovis, J.S., and Boxer, S.G., Langmuir 16 (2000) p.6773.CrossRefGoogle Scholar
61Rehfeldt, F. and Tanaka, M., Langmuir 19 (2003) p.1467.CrossRefGoogle Scholar
62Hillebrandt, H., Tanaka, M., and Sack-mann, E., J.Phys. Chem. B 106 (2002) p.477.CrossRefGoogle Scholar
63Sakmann, B. and Neher, E., Single-Channel Recording (Plenum Press, New York, 1985).Google Scholar
64Plant, A.L., Gueguetchkeri, M., and Yap, W., Biophys. J. 67 (1994) p.1126.CrossRefGoogle Scholar
65Steinem, C., Janshoff, A., Ulrich, W.-P., Sieber, M., and Galla, H.-J., Biochim. Biophys. Acta 1279 (1996) p.169.CrossRefGoogle Scholar
66Stenberg, M., Arwin, H., and Nilsson, A., J.Colloid Interface Sci. 72 (1979) p.255.CrossRefGoogle Scholar
67Hillebrandt, H., Wiegand, G., Tanaka, M., and Sackmann, E., Langmuir 15 (1999) p.8451.CrossRefGoogle Scholar
68Gritsch, S., Nollert, P., Jähnig, F., and Sack-mann, E., Langmuir 14 (1998) p.3118.CrossRefGoogle Scholar
69Wiegand, W., Neumaier, K.R., and Sack-mann, E., Rev. Sci. Inst. 71 (2000) p.2309.CrossRefGoogle Scholar
70Fromherz, P., Offenhausser, A., Vetter, T., and Weis, J., Science 252 (1991) p.1290.CrossRefGoogle Scholar
71Steinhoff, G., Purrucker, O., Tanaka, M., Stutzmann, M., and Eickhoff, M., Adv. Funct. Mater. 13 (2003) p.841.CrossRefGoogle Scholar
72Borisenko, V., Lougheed, T., Hesse, J., Füreder-Kitzmüller, F., Fertig, N., Behrends, J.C., Woolley, A., and Schütz, G.J., Biophys. J. 84 (2003) p.612.CrossRefGoogle Scholar
73Romer, W., Lam, Y.H., Fischer, D., Watts, A., Fischer, W.B., Goring, P., Wehrspohn, R.B., Gosele, U., and Steinem, C., J. Am. Chem. Soc. 126 (2004) p.16267.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Polymer-Supported Membranes: Physical Models of Cell Surfaces
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Polymer-Supported Membranes: Physical Models of Cell Surfaces
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Polymer-Supported Membranes: Physical Models of Cell Surfaces
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *