Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-89lq7 Total loading time: 0.554 Render date: 2022-06-27T11:35:05.675Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Article contents

Synthesis and structure of two-dimensional transition-metal dichalcogenides

Published online by Cambridge University Press:  13 July 2015

Yumeng Shi
Affiliation:
Physical Sciences and Engineering, King Abdullah University of Science and Technology, Saudi Arabia; yumeng.shi@kaust.edu.sa
Hua Zhang
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore; hzhang@ntu.edu.sg
Wen-Hao Chang
Affiliation:
Department of Electrophysics, National Chiao Tung University, Taiwan; whchang@mail.nctu.edu.tw
Hyeon Suk Shin
Affiliation:
Department of Chemistry and Department of Energy Engineering, Ulsan National Institute of Science and Technology, South Korea; shin@unist.ac.kr
Lain-Jong Li
Affiliation:
King Abdullah University of Science and Technology, Saudi Arabia; lance.li@kaust.edu.sa
Get access

Abstract

Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) exhibit unique electrical, optical, thermal, and mechanical properties, which enable them to be used as building blocks in compact and lightweight integrated electronic systems. The controllable and reliable synthesis of atomically thin TMDCs is essential for their practical application. Recent progress in large-area synthesis of monolayer TMDCs paves the way for practical production of various 2D TMDC layers. The intrinsic optical and electrical properties of monolayer TMDCs can be defined by stoichiometry during synthesis. By manipulating the lattice structure or layer stacking manner, it is possible to create atomically thin van der Waals materials with unique and unexplored physical properties. In this article, we review recent developments in the synthesis of TMDC monolayers, alloys, and heterostructures, which shine light on the design of novel TMDCs with desired functional properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chhowalla, M., Shin, H.S., Eda, G., Li, L.-J., Loh, K.P., Zhang, H., Nat. Chem. 5, 263 (2013).CrossRef
Huang, X., Zeng, Z., Zhang, H., Chem. Soc. Rev. 42, 1934 (2013).CrossRef
Ganatra, R., Zhang, Q., ACS Nano 8, 4074 (2014).CrossRef
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A., Nat. Nanotechnol. 6, 147 (2011).CrossRef
Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., Kis, A., Nat. Nanotechnol. 8, 497 (2013).CrossRef
Bertolazzi, S., Krasnozhon, D., Kis, A., ACS Nano 7, 3246 (2013).CrossRef
Wang, H., Yu, L., Lee, Y.-H., Shi, Y., Hsu, A., Chin, M.L., Li, L.-J., Dubey, M., Kong, J., Palacios, T., Nano Lett. 12, 4674 (2012).CrossRef
Ji, Q., Zhang, Y., Zhang, Y., Liu, Z., Chem. Soc. Rev., published online September 26, 2014, doi: 10.1039/C4CS00258J.CrossRef
Shi, Y., Li, H., Li, L.-J., Chem. Soc. Rev., published online October 20, 2014, doi: 10.1039/C4CS00256C.CrossRef
Stephenson, T., Li, Z., Olsen, B., Mitlin, D., Energy Environ. Sci. 7, 209 (2014).CrossRef
Eda, G., Yamaguchi, H., Voiry, D., Fujita, T., Chen, M., Chhowalla, M., Nano Lett. 11, 5111 (2011).CrossRef
Eda, G., Fujita, T., Yamaguchi, H., Voiry, D., Chen, M., Chhowalla, M., ACS Nano 6, 7311 (2012).CrossRef
Qian, X., Liu, J., Fu, L., Li, J., Science 346, 1344 (2014).CrossRef
Lee, C., Yan, H., Brus, L.E., Heinz, T.F., Hone, J., Ryu, S., ACS Nano 4, 2695 (2010).CrossRef
Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.-Y., Galli, G., Wang, F., Nano Lett. 10, 1271 (2010).CrossRef
Ly, T.H., Chiu, M.-H., Li, M.-Y., Zhao, J., Perello, D.J., Cichocka, M.O., Oh, H.M., Chae, S.H., Jeong, H.Y., Yao, F., Li, L.-J., Lee, Y.H., ACS Nano 8, 11401 (2014).CrossRef
Zhou, W., Zou, X., Najmaei, S., Liu, Z., Shi, Y., Kong, J., Lou, J., Ajayan, P.M., Yakobson, B.I., Idrobo, J.-C., Nano Lett. 13, 2615 (2013).CrossRef
van der Zande, A.M., Huang, P.Y., Chenet, D.A., Berkelbach, T.C., You, Y., Lee, G.-H., Heinz, T.F., Reichman, D.R., Muller, D.A., Hone, J.C., Nat. Mater. 12, 554 (2013).CrossRef
Najmaei, S., Liu, Z., Zhou, W., Zou, X., Shi, G., Lei, S., Yakobson, B.I., Idrobo, J.-C., Ajayan, P.M., Lou, J., Nat. Mater. 12, 754 (2013).CrossRef
Ji, Q., Zhang, Y., Gao, T., Zhang, Y., Ma, D., Liu, M., Chen, Y., Qiao, X., Tan, P.-H., Kan, M., Feng, J., Sun, Q., Liu, Z., Nano Lett. 13, 3870 (2013).CrossRef
Zhang, X.-Q., Lin, C.-H., Tseng, Y.-W., Huang, K.-H., Lee, Y.-H., Nano Lett. 15, 410 (2014).CrossRef
Gong, Y., Lin, J., Wang, X., Shi, G., Lei, S., Lin, Z., Zou, X., Ye, G., Vajtai, R., Yakobson, B.I., Terrones, H., Terrones, M., Tay, B.K., Lou, J., Pantelides, S.T., Liu, Z., Zhou, W., Ajayan, P.M., Nat. Mater. 13, 1135 (2014).CrossRef
Duan, X., Wang, C., Shaw, J.C., Cheng, R., Chen, Y., Li, H., Wu, X., Tang, Y., Zhang, Q., Pan, A., Jiang, J., Yu, R., Huang, Y., Duan, X., Nat. Nanotechnol. 9, 1024 (2014).CrossRef
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Science 306, 666 (2004).CrossRef
Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K., Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).CrossRef
Li, H., Wu, J., Yin, Z., Zhang, H., Acc. Chem. Res. 47, 1067 (2014).CrossRef
Li, H., Lu, G., Wang, Y., Yin, Z., Cong, C., He, Q., Wang, L., Ding, F., Yu, T., Zhang, H., Small 9, 1974 (2013).CrossRefPubMed
Li, H., Lu, G., Yin, Z., He, Q., Li, H., Zhang, Q., Zhang, H., Small 8, 682 (2012).CrossRef
Coleman, J.N., Lotya, M., O’Neill, A., Bergin, S.D., King, P.J., Khan, U., Young, K., Gaucher, A., De, S., Smith, R.J., Shvets, I.V., Arora, S.K., Stanton, G., Kim, H.-Y., Lee, K., Kim, G.T., Duesberg, G.S., Hallam, T., Boland, J.J., Wang, J.J., Donegan, J.F., Grunlan, J.C., Moriarty, G., Shmeliov, A., Nicholls, R.J., Perkins, J.M., Grieveson, E.M., Theuwissen, K., McComb, D.W., Nellist, P.D., Nicolosi, V., Science 331, 568 (2011).CrossRef
Zhou, K.-G., Mao, N.-N., Wang, H.-X., Peng, Y., Zhang, H.-L., Angew. Chem. Int. Ed. 50, 10839 (2011).CrossRef
Smith, R.J., King, P.J., Lotya, M., Wirtz, C., Khan, U., De, S., O’Neill, A., Duesberg, G.S., Grunlan, J.C., Moriarty, G., Chen, J., Wang, J., Minett, A.I., Nicolosi, V., Coleman, J.N., Adv. Mater. 23, 3944 (2011).CrossRef
Nicolosi, V., Chhowalla, M., Kanatzidis, M.G., Strano, M.S., Coleman, J.N., Science 340, 1420 (2013).CrossRef
Joensen, P., Frindt, R.F., Morrison, S.R., Mater. Res. Bull. 21, 457 (1986).CrossRef
Dines, M.B., Mater. Res. Bull. 10, 287 (1975).CrossRef
Benavente, E., Santa Ana, M.A., Mendizábal, F., González, G., Coord. Chem. Rev. 224, 87 (2002).CrossRef
Ramakrishna Matte, H.S.S., Gomathi, A., Manna, A.K., Late, D.J., Datta, R., Pati, S.K., Rao, C.N.R., Angew. Chem. Int. Ed. 49, 4059 (2010).CrossRef
Voiry, D., Yamaguchi, H., Li, J., Silva, R., Alves, D.C.B., Fujita, T., Chen, M., Asefa, T., Shenoy, V.B., Eda, G., Chhowalla, M., Nat. Mater. 12, 850 (2013).CrossRef
Kappera, R., Voiry, D., Yalcin, S.E., Branch, B., Gupta, G., Mohite, A.D., Chhowalla, M., Nat. Mater. 13, 1128 (2014).CrossRef
Zeng, Z., Yin, Z., Huang, X., Li, H., He, Q., Lu, G., Boey, F., Zhang, H., Angew. Chem. Int. Ed. 50, 11093 (2011).CrossRef
Zeng, Z., Sun, T., Zhu, J., Huang, X., Yin, Z., Lu, G., Fan, Z., Yan, Q., Hng, H.H., Zhang, H., Angew. Chem. Int. Ed. 51, 9052 (2012).CrossRef
Zeng, Z., Tan, C., Huang, X., Bao, S., Zhang, H., Energy Environ. Sci. 7, 797 (2014).CrossRef
Liu, K.-K., Zhang, W., Lee, Y.-H., Lin, Y.-C., Chang, M.-T., Su, C.-Y., Chang, C.-S., Li, H., Shi, Y., Zhang, H., Nano Lett. 12, 1538 (2012).CrossRef
Lee, Y.-H., Zhang, X.-Q., Zhang, W., Chang, M.-T., Lin, C.-T., Chang, K.-D., Yu, Y.-C., Wang, J.T.-W., Chang, C.-S., Li, L.-J., Lin, T.-W., Adv. Mater. 24, 2320 (2012).CrossRef
Ling, X., Lee, Y.-H., Lin, Y., Fang, W., Yu, L., Dresselhaus, M.S., Kong, J., Nano Lett. 14, 464 (2014).CrossRef
Eichfeld, S.M., Hossain, L., Lin, Y.-C., Piasecki, A.F., Kupp, B., Birdwell, A.G., Burke, R.A., Lu, N., Peng, X., Li, J., Azcatl, A., McDonnell, S., Wallace, R.M., Kim, M.J., Mayer, T.S., Redwing, J.M., Robinson, J.A., ACS Nano 9, 2080 (2015).CrossRef
McDonnell, S., Addou, R., Buie, C., Wallace, R.M., Hinkle, C.L., ACS Nano 8, 2880 (2014).CrossRef
Chen, C.-H., Wu, C.-L., Pu, J., Chiu, M.-H., Kumar, P., Takenobu, T., Li, L.-J., 2D Mater. 1, 034001 (2014).CrossRef
Shi, Y., Huang, J.-K., Jin, L., Hsu, Y.-T., Yu, S.F., Li, L.-J., Yang, H.Y., Sci. Rep. 3, 1839 (2013).CrossRef
Shi, Y., Kim, K.K., Reina, A., Hofmann, M., Li, L.-J., Kong, J., ACS Nano 4, 2689 (2010).CrossRef
Mouri, S., Miyauchi, Y., Matsuda, K., Nano Lett. 13, 5944 (2013).CrossRef
Dolui, K., Rungger, I., Das Pemmaraju, C., Sanvito, S., Phys. Rev. B: Condens. Matter 88, 075420 (2013).CrossRef
Suh, J., Park, T.-E., Lin, D.-Y., Fu, D., Park, J., Jung, H.J., Chen, Y., Ko, C., Jang, C., Sun, Y., Sinclair, R., Chang, J., Tongay, S., Wu, J., Nano Lett. 14, 6976 (2014).CrossRef
Li, H., Duan, X., Wu, X., Zhuang, X., Zhou, H., Zhang, Q., Zhu, X., Hu, W., Ren, P., Guo, P., Ma, L., Fan, X., Wang, X., Xu, J., Pan, A., Duan, X., J. Am. Chem. Soc. 136, 3756 (2014).CrossRef
Gong, Y., Liu, Z., Lupini, A.R., Shi, G., Lin, J., Najmaei, S., Lin, Z., Elías, A.L., Berkdemir, A., You, G., Terrones, H., Terrones, M., Vajtai, R., Pantelides, S.T., Pennycook, S.J., Lou, J., Zhou, W., Ajayan, P.M., Nano Lett. 14, 442 (2013).CrossRef
Su, S.-H., Hsu, W.-T., Hsu, C.-L., Chen, C.-H., Chiu, M.-H., Lin, Y.-C., Chang, W.-H., Suenaga, K., He, J.-H., Li, L.-J., Front. Energy Res. 2, 27 (2014).CrossRef
Li, B., Huang, L., Zhong, M., Huo, N., Li, Y., Yang, S., Fan, C., Yang, J., Hu, W., Wei, Z., Li, J., ACS Nano 9, 1257 (2015).CrossRef
Geim, A.K., Grigorieva, I.V., Nature 499, 419 (2013).CrossRef
Britnell, L., Ribeiro, R.M., Eckmann, A., Jalil, R., Belle, B.D., Mishchenko, A., Kim, Y.-J., Gorbachev, R.V., Georgiou, T., Morozov, S.V., Grigorenko, A.N., Geim, A.K., Casiraghi, C., Neto, A.H.C., Novoselov, K.S., Science 340, 1311 (2013).CrossRef
Tsai, M.-L., Su, S.-H., Chang, J.-K., Tsai, D.-S., Chen, C.-H., Wu, C.-I., Li, L.-J., Chen, L.-J., He, J.-H., ACS Nano 8, 8317 (2014).CrossRef
Britnell, L., Gorbachev, R.V., Jalil, R., Belle, B.D., Schedin, F., Mishchenko, A., Georgiou, T., Katsnelson, M.I., Eaves, L., Morozov, S.V., Peres, N.M.R., Leist, J., Geim, A.K., Novoselov, K.S., Ponomarenko, L.A., Science 335, 947 (2012).CrossRef
Loan, P.T.K., Zhang, W., Lin, C.-T., Wei, K.-H., Li, L.-J., Chen, C.-H., Adv. Mater. 26, 4838 (2014).CrossRef
Chang, Y.-H., Wu, F.-Y., Chen, T.-Y., Hsu, C.-L., Chen, C.-H., Wiryo, F., Wei, K.-H., Chiang, C.-Y., Li, L.-J., Small 10, 895 (2014).CrossRef
Smith, A.J., Chang, Y.-H., Raidongia, K., Chen, T.-Y., Li, L.-J., Huang, J., Adv. Energy Mater. 4, 1400398 (2014).CrossRef
Shi, Y., Wang, Y., Wong, J.I., Tan, A.Y.S., Hsu, C.-L., Li, L.-J., Lu, Y.-C., Yang, H.Y., Sci. Rep. 3, 2169 (2013).CrossRef
Cao, X., Shi, Y., Shi, W., Rui, X., Yan, Q., Kong, J., Zhang, H., Small 9, 3433 (2013).CrossRef
Kang, J., Tongay, S., Zhou, J., Li, J., Wu, J., Appl. Phys. Lett. 102, 012111 (2013).CrossRef
Gong, C., Zhang, H., Wang, W., Colombo, L., Wallace, R.M., Cho, K., Appl. Phys. Lett. 103, 053513 (2013).CrossRef
Terrones, H., López-Urías, F., Terrones, M., Sci. Rep. 3, 1549 (2013).CrossRef
Fang, H., Battaglia, C., Carraro, C., Nemsak, S., Ozdol, B., Kang, J.S., Bechtel, H.A., Desai, S.B., Kronast, F., Unal, A.A., Conti, G., Conlon, C., Palsson, G.K., Martin, M.C., Minor, A.M., Fadley, C.S., Yablonovitch, E., Maboudian, R., Javey, A., Proc. Natl. Acad. Sci. U.S.A. 111, 6198 (2014).CrossRef
Chiu, M.-H., Li, M.-Y., Zhang, W., Hsu, W.-T., Chang, W.-H., Terrones, M., Terrones, H., Li, L.-J., ACS Nano 8, 9649 (2014).CrossRef
Lee, C.-H., Lee, G.-H., van der Zande, A.M., Chen, W., Li, Y., Han, M., Cui, X., Arefe, G., Nuckolls, C., Heinz, T.F., Guo, J., Hone, J., Kim, P., Nat. Nanotechnol. 9, 676 (2014).CrossRef
Tongay, S., Fan, W., Kang, J., Park, J., Koldemir, U., Suh, J., Narang, D.S., Liu, K., Ji, J., Li, J., Sinclair, R., Wu, J., Nano Lett. 14, 3185 (2014).CrossRef
Rivera, P., Schaibley, J.R., Jones, A.M., Ross, J.S., Wu, S., Aivazian, G., Klement, P., Seyler, K., Clark, G., Ghimire, N.J., Yan, J., Mandrus, D.G., Yao, W., Xu, X., Nat. Commun. 6, 6242 (2015).CrossRef
Huang, C., Wu, S., Sanchez, A.M., Peters, J.J.P., Beanland, R., Ross, J.S., Rivera, P., Yao, W., Cobden, D.H., Xu, X., Nat. Mater. 13, 1096 (2014).CrossRef
Shi, Y., Hamsen, C., Jia, X., Kim, K.K., Reina, A., Hofmann, M., Hsu, A.L., Zhang, K., Li, H., Juang, Z.-Y., Dresselhaus, M.S., Li, L.-J., Kong, J., Nano Lett. 10, 4134 (2010).CrossRef
Mak, K.F., He, K., Shan, J., Heinz, T.F., Nat. Nanotechnol. 7, 494 (2012).CrossRef
Lee, G.-H., Yu, Y.-J., Cui, X., Petrone, N., Lee, C.-H., Choi, M.S., Lee, D.-Y., Lee, C., Yoo, W.J., Watanabe, K., Taniguchi, T., Nuckolls, C., Kim, P., Hone, J., ACS Nano 7, 7931 (2013).CrossRef
Shi, Y., Zhou, W., Lu, A.-Y., Fang, W., Lee, Y.-H., Hsu, A.L., Kim, S.M., Kim, K.K., Yang, H.Y., Li, L.-J., Idrobo, J.-C., Kong, J., Nano Lett. 12, 2784 (2012).CrossRef
Ma, Y., Dai, Y., Guo, M., Niu, C., Huang, B., Nanoscale 3, 3883 (2011).CrossRefPubMed
Lin, Y.-C., Lu, N., Perea-Lopez, N., Li, J., Lin, Z., Peng, X., Lee, C.H., Sun, C., Calderin, L., Browning, P.N., Bresnehan, M.S., Kim, M.J., Mayer, T.S., Terrones, M., Robinson, J.A., ACS Nano 8, 3715 (2014).CrossRef
Lin, Y.-C., Chang, C.-Y.S., Ghosh, R.K., Li, J., Zhu, H., Addou, R., Diaconescu, B., Ohta, T., Peng, X., Lu, N., Kim, M.J., Robinson, J.T., Wallace, R.M., Mayer, T.S., Datta, S., Li, L.-J., Robinson, J.A., Nano Lett. 14, 6936 (2014).CrossRef
Lin, M.-Y., Chang, C.-E., Wang, C.-H., Su, C.-F., Chen, C., Lee, S.-C., Lin, S.-Y., Appl. Phys. Lett. 105, 073501 (2014).CrossRef
Okada, M., Sawazaki, T., Watanabe, K., Taniguch, T., Hibino, H., Shinohara, H., Kitaura, R., ACS Nano 8, 8273 (2014).CrossRef
Zheng, J., Zhang, H., Dong, S., Liu, Y., Nai, C.T., Shin, H.S., Jeong, H.Y., Liu, B., Loh, K.P., Nat. Commun. 5, 2995 (2014).CrossRef

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Synthesis and structure of two-dimensional transition-metal dichalcogenides
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Synthesis and structure of two-dimensional transition-metal dichalcogenides
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Synthesis and structure of two-dimensional transition-metal dichalcogenides
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *