Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-n4bck Total loading time: 0.29 Render date: 2022-08-08T05:44:11.035Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Article contents

Thermoelectronic energy conversion: Concepts and materials

Published online by Cambridge University Press:  10 July 2017

R. Wanke
Affiliation:
Department of Solid State Quantum Electronics, Max Planck Institute for Solid State Research, Germany; r.wanke@fkf.mpg.de
W. Voesch
Affiliation:
Department of Solid State Quantum Electronics, Max Planck Institute for Solid State Research, Germany; w.voesch@fkf.mpg.de
I. Rastegar
Affiliation:
Department of Solid State Quantum Electronics, Max Planck Institute for Solid State Research, Germany; i.rastegar@fkf.mpg.de
A. Kyriazis
Affiliation:
Department of Solid State Quantum Electronics, Max Planck Institute for Solid State Research, Germany; alexander.kyriazis@alumni.ubc.ca
W. Braun
Affiliation:
Department of Solid State Quantum Electronics, Max Planck Institute for Solid State Research, Germany; w.braun@fkf.mpg.de
J. Mannhart
Affiliation:
Department of Solid State Quantum Electronics, Max Planck Institute for Solid State Research, Germany; office-mannhart@fkf.mpg.de
Get access

Abstract

Thermoelectronic energy conversion can potentially provide an exceptionally efficient way to convert heat into electric power. Key components of such converters are materials with designed, small work functions. We present the principles of thermoelectronic energy conversion and discuss the advantages and challenges of the conversion process, as well the state of the art of the respective research.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hatsopoulos, G.N., Gyftopoulos, E.P., Thermionic Energy Conversion, Volume I: Processes and Devices (MIT Press, Cambridge, MA, 1973).Google Scholar
Moyzhes, B.Y., Geballe, T.H., J. Phys. D Appl. Phys. 38, 782 (2005).CrossRef
Meir, S., Stephanos, C., Geballe, T.H., Mannhart, J., J. Renew. Sustain. Energy 5, 043127 (2013).CrossRef
Wanke, R., Hassink, G.W.J., Stephanos, C., Rastegar, I., Braun, W., Mannhart, J., J. Appl. Phys. 119, 244507 (2016).CrossRef
Reisch, M., Halbleiter-Bauelemente (Springer, Berlin, 2007).Google Scholar
Vayenas, C.G., Bebelis, S., Ladas, S., Nature 343, 625 (1990).CrossRef
Becquerel, E., Ann. Chim. Phys. 39, 48 (1853).
Guthrie, F., Proc. R. Soc. Lond. 21, 168 (1873).CrossRef
Edison, T.A., US Patent 307031 (1884).
Schlichter, W., Ann. Phys. 47, 573 (1915).CrossRef
Novikov, I., At. Energy 3, 409 (1957).
Gryaznov, G., At. Energy 89, 510 (2000).CrossRef
Belbachir, R.Y., An, Z., Ono, T., J. Micromech. Microeng. 24, 085009 (2014).CrossRef
Lee, J.-H., Bargatin, I., Vancil, B.K., Gwinn, T.O., Maboudian, R., Melosh, N.A., Howe, R.T., J. Microelectromech. Syst. 23, 1182 (2014).CrossRef
Littau, K.A., Sahasrabuddhe, K., Barfield, D., Yuan, H., Shen, Z.-X., Howe, R.T., Melosh, N.A., Phys. Chem. Chem. Phys. 15, 14442 (2013).CrossRef
Lee, J.H., Bargatin, I., Melosh, N.A., Howe, R.T., Appl. Phys. Lett. 100, 173904 (2012).CrossRef
Hassink, G., Wanke, R., Rastegar, I., Braun, W., Stephanos, C., Herlinger, P., Smet, J.H., Mannhart, J., APL Mater. 3, 076106 (2015).CrossRef
Schwede, J.W., Bargatin, I., Riley, D.C., Hardin, B.E., Rosenthal, S.J., Sun, Y., Schmitt, F., Pianetta, P., Howe, R.T., Shen, Z., Melosh, N.A., Nat. Mater. 9, 762 (2010).CrossRef
Tyne, G.F.J., Saga of the Vacuum Tube, 2nd printing (Howard W. Sams, Indianapolis, 1987).
Blewett, J.P., J. Appl. Phys. 10, 831 (1939).CrossRef
Cronin, J.L., IEE Proc. I Solid-State Electron Devices 128, 19 (1981).CrossRef
Lafferty, J.M., J. Appl. Phys. 22, 299 (1951).CrossRef
Shiota, I., Miyamoto, M.Y., Eds., Functionally Graded Materials (Elsevier, Amsterdam, 1997).Google Scholar
Giordano, L., Cinquini, F., Pacchioni, G., Phys. Rev. B Condens. Matter 73, 045414 (2006).CrossRef
Vlahos, V., Lee, Y., Booske, J., Morgan, D., Turek, L., Kirshner, M., Kowalczyk, R., Wilsen, C., Appl. Phys. Lett. 94, 184102 (2009).CrossRef
Vaughn, J.M., Wan, C., Jamison, K.D., Kordesch, M.E., IBM J. Res. Dev. 55, 414 (2011).
Wang, Y., Wang, J., Liu, W., Zhang, K., Li, J., IEEE Trans. Electron Devices 54, 1061 (2007).CrossRef
Toda, Y., Matsuishi, S., Hayashi, K., Ueda, K., Kamiya, T., Hirano, M., Hosono, H., Adv. Mater. 16, 685 (2004).CrossRef
Koeck, F.A.M., Nemanich, R.J., Diam. Relat. Mater. 15, 217 (2006).CrossRef
May, P., Stone, J., Ashfold, M., Hallam, K., Wang, W., Fox, N., Diam. Relat. Mater. 7, 671 (1998).CrossRef
Koeck, F.A.M., Nemanich, R.J., Lazea, A., Haenen, K., Diam. Relat. Mater. 18, 789 (2009).CrossRef
Koeck, F.A.M., Nemanich, R.J., Balasubramaniam, Y., Haenen, K., Sharp, J., Diam. Relat. Mater. 20, 1229 (2011).CrossRef
Khoshaman, A.H., Fan, H.D., Koch, A.T., Sawatzky, G.A., Nojeh, A., IEEE Nanotechnol. Mag. 8, 4 (2014).CrossRef
Zhao, Y., Ryu, S., Brus, L.E., Kim, K.S., Kim, P., Nano Lett. 9, 3430 (2009).
Chang, J.K., Lin, W.H., Taur, J.I., Chen, T.H., Liao, G.K., Pi, T.W., Chen, M.H., Wu, C.I., ACS Appl. Mater. Interfaces 7, 17155 (2015).CrossRef
Zhong, Z., Hansmann, P., Phys. Rev. B Condens. Matter 93, 235116 (2016).CrossRef
Ilic, O., Bermel, P., Chen, G., Joannopoulos, J.D., Celanovic, I., Soljačić, M., Nat. Nanotechnol. 11, 320 (2016).CrossRef

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Thermoelectronic energy conversion: Concepts and materials
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Thermoelectronic energy conversion: Concepts and materials
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Thermoelectronic energy conversion: Concepts and materials
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *