Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-44467 Total loading time: 0.287 Render date: 2021-06-19T11:12:31.842Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Article contents

Three-dimensional lithography by elasto-capillary engineering of filamentary materials

Published online by Cambridge University Press:  11 February 2016

Sameh H. Tawfick
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois at Urbana–Champaign, USA; tawfick@illinois.edu
José Bico
Affiliation:
Physique et Mécanique des Milieux Hétérogènes, École Supérieure de Physique et de Chimie Industrielles, France; jbico@pmmh.espci.fr
Steven Barcelo
Affiliation:
Hewlett Packard Enterprise, USA; steven.jam.barcelo@hp.com
Get access

Abstract

Surface textures with three-dimensional (3D) architectures demonstrate the ability to control interfacial, optical, chemical, and mechanical properties. Potential applications range from device-scale biomolecule sensing to meter-scale optical or nonwetting coatings. In recent years, capillary forming has become a versatile and scalable approach to creating complex geometries at the nano- and micron scales. Surface tension of a liquid can deform straight pillars and assemble them into 3D architectures with predetermined orientation, where short-range adhesion forces stabilize the final forms. A variety of techniques have been demonstrated for carbon nanotubes and polymer filamentary materials to fabricate useful devices and textures. We discuss these materials and processes as well as the underlying elasto-capillary physics. We indicate the need for new simulation tools to design and engineer elasto-capillary transformations and methods to increase their throughput toward scalable manufacturing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

Liddle, J.A., Gallatin, G.M., Nanoscale 3 (7), 2679 (2011).CrossRef
Chu, K.-H., Xiao, R., Wang, E.N., Nat. Mater. 9 (5), 413 (2010).CrossRef
Pint, C.L., Takei, K., Kapadia, R., Zheng, M., Ford, A.C., Zhang, J., Jamshidi, A., Bardhan, R., Urban, J.J., Wu, M., Ager, J.W., Oye, M.M., Javey, A., Adv. Energy Mater. 1 (6), 1040 (2011).CrossRef
Paxson, A.T., Varanasi, K.K., Nat. Commun. 4, 1492 (2013).CrossRef
Gansel, J.K., Thiel, M., Rill, M.S., Decker, M., Bade, K., Saile, V., von Freymann, G., Linden, S., Wegener, M., Science 325 (5947), 1513 (2009).CrossRef
Mei, J., Ma, G., Yang, M., Yang, Z., Wen, W., Sheng, P., Nat. Commun. 3, 756 (2012).CrossRef
Zhao, Y., Belkin, M.A., Alù, A., Nat. Commun. 3, 870 (2012).CrossRef
De Volder, M., Hart, A.J., Angew. Chem. Int. Ed. 52 (9), 2412 (2013).CrossRef
Roman, B., Bico, J., J. Phys. Condens. Matter 22, 493101 (2010).CrossRef
Hu, Y., Lao, Z., Cumming, B.P., Wu, D., Li, J., Liang, H., Chu, J., Huang, W., Gu, M., Proc. Natl. Acad. Sci. U.S.A. 112 (22), 6876 (2015).CrossRef
Copic, D., Park, S.J., Tawfick, S., De Volder, M., Hart, A.J., Lab Chip 11 (10), 1831 (2011).CrossRef
Hayamizu, Y., Yamada, T., Mizuno, K., Davis, R.C., Futaba, D.N., Yumura, M., Hata, K., Nat. Nanotechnol. 3 (5), 289 (2008).CrossRef
Tawfick, S., De Volder, M., Hart, A.J., Langmuir 27 (10), 6389 (2011).CrossRef
Vaccaro, P.O., Kubota, K., Fleischmann, T., Saravanan, S., Aida, T., Microelectron. J. 34 (5–8), 447 (2003).CrossRef
Guo, X., Li, H., Yeop Ahn, B., Duoss, E.B., Hsia, K.J., Lewis, J.A., Nuzzo, R.G., Proc. Natl. Acad. Sci. U.S.A. 106 (48), 20149 (2009).CrossRef
Leong, T.G., Zarafshar, A.M., Gracias, D.H., Small 6 (7), 792 (2010).CrossRefPubMed
Whitesides, G.M., Grzybowski, B., Science 295 (5564), 2418 (2002).CrossRef
Bowden, N., Brittain, S., Evans, A.G., Hutchinson, J.W., Whitesides, G.M., Nature 393 (6681), 146 (1998).
Duprat, C., Protiere, S., Beebe, A.Y., Stone, H.A., Nature 482 (7386), 510 (2012).CrossRef
Maboudian, R., Howe, R.T., J. Vac. Sci. Technol. B 15 (1), 1 (1997).CrossRef
Lambert, P., Mastrangeli, M., Valsamis, J.-B., Degrez, G., Microfluid. Nanofluid. 9 (4–5), 797 (2010).CrossRef
Legrain, A., Janson, T.G., Berenschot, J.W., Abelmann, L., Tas, N.R., J. Appl. Phys. 115 (21), 214905 (2014).CrossRef
Fan, J.G., Dyer, D., Zhang, G., Zhao, Y.P., Nano Lett. 4 (11), 2133 (2004).CrossRef
Pokroy, B., Kang, S.H., Mahadevan, L., Aizenberg, J., Science 323 (5911), 237 (2009).CrossRef
Bernardino, N.R., Blickle, V., Dietrich, S., Langmuir 26 (10), 7233 (2010).CrossRef
Dawood, M.K., Zheng, H., Liew, T.H., Leong, K.C., Foo, Y.L., Rajagopalan, R., Khan, S.A., Choi, W.K., Langmuir 27 (7), 4126 (2011).CrossRef
Smith, M.K., Singh, V., Kalaitzidou, K., Cola, B.A., ACS Nano 9 (2), 1080 (2015).CrossRef
Grinthal, A., Kang, S.H., Epstein, A.K., Aizenberg, M., Khan, M., Aizenberg, J., Nano Today 7 (1), 35 (2012).CrossRef
Chakrapani, N., Wei, B., Carrillo, A., Ajayan, P.M., Kane, R.S., Proc. Natl. Acad. Sci. U.S.A. 101 (12), 4009 (2004).CrossRef
Liu, H., Li, S.H., Zhai, J., Li, H.J., Zheng, Q.S., Jiang, L., Zhu, D.B., Angew. Chem. Int. Ed. 43 (9), 1146 (2004).CrossRef
Cohen, A.E., Mahadevan, L., Proc. Natl. Acad. Sci. U.S.A. 100 (21), 12141 (2003).CrossRef
Liu, J.-L., Feng, X.-Q., Acta Mech. Sin. 28 (4), 928 (2012).CrossRef
Chae, S.J., Güneş, F., Kim, K.K., Kim, E.S., Han, G.H., Kim, S.M., Shin, H.-J., Yoon, S.-M., Choi, J.-Y., Park, M.H., Yang, C.W., Pribat, D., Lee, Y.H., Adv. Mater. 21 (22), 2328 (2009).CrossRef
Duan, H., Yang, J.K., Berggren, K.K., Small 7 (18), 2661 (2011).CrossRef
Bico, J., Roman, B., Moulin, L., Boudaoud, A., Nature 432 (7018), 690 (2004).CrossRef
Kim, H.Y., Mahadevan, L., J. Fluid Mech. 548, 141 (2006).CrossRef
Py, C., Bastien, R., Bico, J., Roman, B., Boudaoud, A., Europhys. Lett. 77, 44005 (2007).CrossRef
Chandra, D., Yang, S., Acc. Chem. Res. 43, 1080 (2010).CrossRef
Zhao, Y.P., Fan, J.G., Appl. Phys. Lett. 88 (10), 103123 (2006).CrossRef
Chandra, D., Yang, S., Langmuir 25 (18), 10430 (2009).CrossRef
Correa-Duarte, M.A., Wagner, N., Rojas-Chapana, J., Morsczeck, C., Thie, M., Giersig, M., Nano Lett. 4 (11), 2233 (2004).CrossRef
Chiodi, F., Roman, B., Bico, J., Europhys. Lett. 90, 44006 (2010).CrossRef
Glassmaker, N.J., Jagota, A., Hui, C.-Y., Kim, J., J. R. Soc. Interface 1 (1), 23 (2004).CrossRef
Roca-Cusachs, P., Rico, F., Martínez, E., Toset, J., Farré, R., Navajas, D., Langmuir 21 (12), 5542 (2005).CrossRef
Delrio, F., De Boer, M., Knapp, J., Reedy, E., Clews, P., Dunn, M., Nat. Mater. 4 (8), 629 (2005).CrossRef
Kang, S.H., Pokroy, B., Mahadevan, L., Aizenberg, J., ACS Nano 4 (11), 6323 (2010).CrossRef
Chaudhury, M.K., Weaver, T., Hui, C.Y., Kramer, E.J., J. Appl. Phys. 80 (1), 30 (1996).CrossRef
Futaba, D.N., Hata, K., Yamada, T., Hiraoka, T., Hayamizu, Y., Kakudate, Y., Tanaike, O., Hatori, H., Yumura, M., Iijima, S., Nat. Mater. 5 (12), 987 (2006).CrossRef
Yamada, T., Namai, T., Hata, K., Futaba, D.N., Mizuno, K., Fan, J., Yudasaka, M., Yumura, M., Iijima, S., Nat. Nanotechnol. 1 (2), 131 (2006).CrossRef
De Volder, M., Tawfick, S.H., Park, S.J., Copic, D., Zhao, Z., Lu, W., Hart, A.J., Adv. Mater. 22 (39), 4384 (2010).CrossRef
Duan, H., Berggren, K.K., Nano Lett. 10 (9), 3710 (2010).CrossRef
Kang, S.H., Wu, N., Grinthal, A., Aizenberg, J., Phys. Rev. Lett. 107 (17), 177802 (2011).CrossRef
Chandra, D., Yang, S., Soshinsky, A.A., Gambogi, R.J., ACS Appl. Mater. Interfaces 1 (8), 1698 (2009).CrossRef
Vukusic, P., Hallam, B., Noyes, J., Science 315 (5810), 348 (2007).CrossRef
Barcelo, S.J., Kim, A., Wu, W., Li, Z., ACS Nano 6 (7), 6446 (2012).CrossRef
Hao, E., Schatz, G.C., J. Chem. Phys. 120 (1), 357 (2004).CrossRef
Wustholz, K.L., Henry, A.I., McMahon, J.M., Freeman, R.G., Valley, N., Piotti, M.E., Natan, M.J., Schatz, G.C., Van Duyne, R.P., J. Am. Chem. Soc. 132 (31), 10903 (2010).CrossRef
Fang, Y., Seong, N.H., Dlott, D.D., Science 321 (5887), 388 (2008).CrossRef
Kim, A., Barcelo, S.J., Williams, R.S., Li, Z., Anal. Chem. 84 (21), 9303 (2012).CrossRef
Hu, M., Ou, F.S., Wu, W., Naumov, I., Li, X., Bratkovsky, A.M., Williams, R.S., Li, Z., J. Am. Chem. Soc. 132 (37), 12820 (2010).CrossRef
Ou, F.S., Hu, M., Naumov, I., Kim, A., Wu, W., Bratkovsky, A.M., Li, X., Williams, R.S., Li, Z., Nano Lett. 11 (6), 2538 (2011).CrossRef
Kim, A., Ou, F.S., Ohlberg, D.A., Hu, M., Williams, R.S., Li, Z., J. Am. Chem. Soc. 133 (21), 8234 (2011).CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Three-dimensional lithography by elasto-capillary engineering of filamentary materials
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Three-dimensional lithography by elasto-capillary engineering of filamentary materials
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Three-dimensional lithography by elasto-capillary engineering of filamentary materials
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *