Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-x9ds4 Total loading time: 0.814 Render date: 2023-02-05T08:42:22.778Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Article contents

Toward high-mobility organic field-effect transistors: Control of molecular packing and large-area fabrication of single-crystal-based devices

Published online by Cambridge University Press:  14 January 2013

Hanying Li
Affiliation:
State Key Laboratory of Silicon Materials and Department of Polymer Science and Engineering, Zhejiang University, China; hanying_li@zju.edu.cn
Gaurav Giri
Affiliation:
Department of Chemical Engineering, Stanford University; ggiri@stanford.edu
Jeffrey B.-H. Tok
Affiliation:
Department of Chemical Engineering, Stanford University; jbtok@stanford.edu
Zhenan Bao
Affiliation:
Department of Chemical Engineering, Stanford University; zbao@stanford.edu
Get access

Abstract

High-mobility organic field-effect transistors (OFETs) are the basic units for a variety of high-performance electronic applications. Here, we review recent progress in controlling molecular packing and crystal growth in high-mobility, small molecular organic FETs. Strategies to tune molecular packing of organic semiconductors and their impact on charge transport are described. Methods for the controlled growth of single-crystal organic semiconductors required for large-area device construction are reviewed. Furthermore, the advantages, limitations, and potential of these methods are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sekitani, T., Zschieschang, U., Klauk, H., Someya, T., Nat. Mater. 9, 1015 (2010).CrossRef
Yan, H., Chen, Z.H., Zheng, Y., Newman, C., Quinn, J.R., Dotz, F., Kastler, M., Facchetti, A., Nature 457, 679 (2009).CrossRef
Klauk, H., Zschieschang, U., Pflaum, J., Halik, M., Nature 445, 745 (2007).CrossRef
Crone, B., Dodabalapur, A., Lin, Y.Y., Filas, R.W., Bao, Z., LaDuca, A., Sarpeshkar, R., Katz, H.E., Li, W., Nature 403, 521 (2000).CrossRef
Gelinck, G.H., Huitema, H.E.A., Van Veenendaal, E., Cantatore, E., Schrijnemakers, L., Van der Putten, J., Geuns, T.C.T., Beenhakkers, M., Giesbers, J.B., Huisman, B.H., Meijer, E.J., Benito, E.M., Touwslager, F.J., Marsman, A.W., Van Rens, B.J.E., De Leeuw, D.M., Nat. Mater. 3, 106 (2004).CrossRef
Rogers, J.A., Bao, Z., Baldwin, K., Dodabalapur, A., Crone, B., Raju, V.R., Kuck, V., Katz, H., Amundson, K., Ewing, J., Drzaic, P., Proc. Natl. Acad. Sci. U.S.A. 98, 4835 (2001).CrossRef
Mannsfeld, S.C.B., Tee, B.C.K., Stoltenberg, R.M., Chen, C., Barman, S., Muir, B.V.O., Sokolov, A.N., Reese, C., Bao, Z.N., Nat. Mater. 9, 859 (2010).CrossRef
Sekitani, T., Yokota, T., Zschieschang, U., Klauk, H., Bauer, S., Takeuchi, K., Takamiya, M., Sakurai, T., Someya, T., Science 326, 1516 (2009).CrossRef
Roberts, M.E., Sokolov, A.N., Bao, Z.N., J. Mater. Chem. 19, 3351 (2009).CrossRef
Sokolov, A.N., Roberts, M.E., Johnson, O.B., Cao, Y.D., Bao, Z.N., Adv. Mater. 22, 2349 (2010).CrossRef
Someya, T., Kato, Y., Sekitani, T., Iba, S., Noguchi, Y., Murase, Y., Kawaguchi, H., Sakurai, T., Proc. Natl. Acad. Sci. U.S.A. 102, 12321 (2005).CrossRef
Tsumura, A., Koezuka, H., Ando, T., Appl. Phys. Lett. 49, 1210 (1986).CrossRef
Mitsui, C., Soeda, J., Miwa, K., Tsuji, H., Takeya, J., Nakamura, E., J. Am. Chem. Soc. 134, 5448 (2012).CrossRef
Lv, A., Puniredd, S.R., Zhang, J., Li, Z., Zhu, H., Jiang, W., Dong, H., He, Y., Jiang, L., Li, Y., Pisula, W., Meng, Q., Hu, W., Wang, Z., Adv. Mater. 24, 2626 (2012).CrossRef
Oh, J.H., Lee, H.W., Mannsfeld, S., Stoltenberg, R.M., Jung, E., Jin, Y.W., Kim, J.M., Yoo, J.B., Bao, Z.N., Proc. Natl. Acad. Sci. U.S.A. 106, 6065 (2009).CrossRef
Sundar, V.C., Zaumseil, J., Podzorov, V., Menard, E., Willett, R.L., Someya, T., Gershenson, M.E., Rogers, J.A., Science 303, 1644 (2004).CrossRef
Molinari, A.S., Alves, H., Chen, Z., Facchetti, A., Morpurgo, A.F., J. Am. Chem. Soc. 131, 2462 (2009).CrossRef
Podzorov, V., Menard, E., Borissov, A., Kiryukhin, V., Rogers, J.A., Gershenson, M.E., Phys. Rev. Lett. 93, 086602 (2004).CrossRef
Nakayama, K., Hirose, Y., Soeda, J., Yoshizumi, M., Uemura, T., Uno, M., Li, W., Kang, M., Yamagishi, M., Okada, Y., Miyazaki, E., Nakazawa, Y., Nakao, A., Takimiya, K., Takeya, J., Adv. Mater. 23, 1626 (2011).CrossRef
Jurchescu, O.D., Popinciuc, M., van Wees, B.J., Palstra, T.T.M., Adv. Mater. 19, 688 (2007).CrossRef
Takeya, J., Yamagishi, M., Tominari, Y., Hirahara, R., Nakazawa, Y., Nishikawa, T., Kawase, T., Shimoda, T., Ogawa, S., Appl. Phys. Lett. 90, 102120 (2007).CrossRef
Menard, E., Podzorov, V., Hur, S.H., Gaur, A., Gershenson, M.E., Rogers, J.A., Adv. Mater. 16, 2097 (2004).CrossRef
Reese, C., Bao, Z.N., Mater. Today 10, 20 (2007).CrossRef
Minemawari, H., Yamada, T., Matsui, H., Tsutsumi, J., Haas, S., Chiba, R., Kumai, R., Hasegawa, T., Nature 475, 364 (2011).CrossRef
Islam, M.M., Pola, S., Tao, Y.T., Chem. Commun. 47, 6356 (2011).CrossRef
Kim, D.H., Lee, D.Y., Lee, H.S., Lee, W.H., Kim, Y.H., Han, J.I., Cho, K., Adv. Mater. 19, 678 (2007).CrossRef
Anthopoulos, T.D., Singh, B., Marjanovic, N., Sariciftci, N.S., Ramil, A.M., Sitter, H., Colle, M., de Leeuw, D.M., Appl. Phys. Lett. 89, 213504 (2006).CrossRef
Shukla, D., Nelson, S.F., Freeman, D.C., Rajeswaran, M., Ahearn, W.G., Meyer, D.M., Carey, J.T., Chem. Mater. 20, 7486 (2008).CrossRef
Tsao, H.N., Cho, D.M., Park, I., Hansen, M.R., Mavrinskiy, A., Yoon, D.Y., Graf, R., Pisula, W., Spiess, H.W., Müllen, K.. J. Am. Chem. Soc. 133, 2605 (2011).CrossRef
Wang, C.-H., Hsieh, C.-Y., Hwang, J.-C., Adv. Mater. 23, 1630 (2011).CrossRef
Li, H.Y., Tee, B.C.K., Cha, J.J., Cui, Y., Chung, J.W., Lee, S.Y., Bao, Z.N., J. Am. Chem. Soc. 134, 2760 (2012).CrossRef
Coropceanu, V., Cornil, J., da Silva, D.A., Olivier, Y., Silbey, R., Bredas, J.L., Chem. Rev. 107, 926 (2007).CrossRef
Kang, J.H., da Silva, D., Bredas, J.L., Zhu, X.Y., Appl. Phys. Lett. 86, 152115 (2005).CrossRef
Bredas, J.L., Calbert, J.P., da Silva, D.A., Cornil, J., Proc. Natl. Acad. Sci. U.S.A. 99, 5804 (2002).CrossRef
Troisi, A., Chem. Soc. Rev. 40, 2347 (2011).CrossRef
Solomon, G.C., Herrmann, C., Vura-Weis, J., Wasielewski, M.R., Ratner, M.A., J. Am. Chem. Soc. 132, 7887 (2010).CrossRef
Jung, B.J., Tremblay, N.J., Yeh, M.L., Katz, H.E., Chem. Mater. 23, 568 (2011).CrossRef
Oh, J.H., Suraru, S.L., Lee, W.Y., Konemann, M., Hoffken, H.W., Roger, C., Schmidt, R., Chung, Y., Chen, W.C., Wurthner, F., Bao, Z.N., Adv. Funct. Mater. 20, 2148 (2010).CrossRef
Goetz, K.P., Li, Z., Ward, J.W., Bougher, C., Rivnay, J., Smith, J., Conrad, B.R., Parkin, S.R., Anthopoulos, T.D., Salleo, A., Anthony, J.E., Jurchescu, O.D., Adv. Mater. 23, 3698 (2011).CrossRef
Payne, M.M., Parkin, S.R., Anthony, J.E., Kuo, C.C., Jackson, T.N., J. Am. Chem. Soc. 127, 4986 (2005).CrossRef
Takimiya, K., Shinamura, S., Osaka, I., Miyazaki, E., Adv. Mater. 23, 4347 (2011).CrossRef
Anthony, J.E., Eaton, D.L., Parkin, S.R., Org. Lett. 4, 15 (2002).CrossRef
Klauk, H., Halik, M., Zschieschang, U., Schmid, G., Radlik, W., Weber, W., J. Appl. Phys. 92, 5259 (2002).CrossRef
Jurchescu, O.D., Baas, J., Palstra, T.T.M., Appl. Phys. Lett. 84, 3061 (2004).CrossRef
Anthony, J.E., Brooks, J.S., Eaton, D.L., Parkin, S.R., J. Am. Chem. Soc. 123, 9482 (2001).CrossRef
Liu, Y.-Y., Song, C.-L., Zeng, W.-J., Zhou, K.-G., Shi, Z.-F., Ma, C.-B., Yang, F., Zhang, H.-L., Gong, X., J. Am. Chem. Soc. 132, 16349 (2010).CrossRef
Yoshida, H., Sato, N., Phys. Rev. B 77, 235205 (2008).CrossRef
Mannsfeld, S.C.B., Tang, M.L., Bao, Z.N., Adv. Mater. 23, 127 (2011).CrossRef
Tang, M.L., Oh, J.H., Reichardt, A.D., Bao, Z.N., J. Am. Chem. Soc. 131, 3733 (2009).CrossRef
Anthony, J.E., Chem. Rev. 106, 5028 (2006).CrossRef
Anthony, J.E., Facchetti, A., Heeney, M., Marder, S.R., Zhan, X., Adv. Mater. 22, 3876 (2010).CrossRef
Moon, H., Zeis, R., Borkent, E.J., Besnard, C., Lovinger, A.J., Siegrist, T., Kloc, C., Bao, Z.N., J. Am. Chem. Soc. 126, 15322 (2004).CrossRef
Gsanger, M., Oh, J.H., Konemann, M., Hoffken, H.W., Krause, A.M., Bao, Z.N., Wurthner, F., Angew. Chem., Int. Ed. 49, 740 (2010).CrossRef
Reese, C., Roberts, M.E., Parkin, S.R., Bao, Z.N., Adv. Mater. 21, 3678 (2009).CrossRef
Sokolov, A.N., PhD thesis, University of Iowa (2007).
Che, C.M., Chow, C.F., Yuen, M.Y., Roy, V.A.L., Lu, W., Chen, Y., Chui, S.S.Y., Zhu, N.Y., Chem. Sci. 2, 216 (2011).CrossRef
Thompson, S.E., Armstrong, M., Auth, C., Cea, S., Chau, R., Glass, G., Hoffman, T., Klaus, J., Ma, Z.Y., McIntyre, B., Murthy, A., Obradovic, B., Shifren, L., Sivakumar, S., Tyagi, S., Ghani, T., Mistry, K., Bohr, M., El-Mansy, Y., IEEE Electron Device Lett. 25, 191 (2004).CrossRef
Opitz, A., Ecker, B., Wagner, J., Hinderhofer, A., Schreiber, F., Manara, J., Pflaum, J., Brutting, W., Org. Electron. 10, 1259 (2009).CrossRef
Salzmann, I., Duhm, S., Heimel, G., Oehzelt, M., Kniprath, R., Johnson, R.L., Rabe, J.P., Koch, N., J. Am. Chem. Soc. 130, 12870 (2008).CrossRef
Vogel, J.O., Salzmann, I., Opitz, R., Duhm, S., Nickel, B., Rabe, J.P., Koch, N., J. Phys. Chem. B 111, 14097 (2007).CrossRef
Cosseddu, P., Vogel, J.O., Fraboni, B., Rabe, J.P., Koch, N., Bonfiglio, A., Adv. Mater. 21, 344 (2009).CrossRef
Huang, L., Liu, C., Qiao, X., Tian, H., Geng, Y., Yan, D., Adv. Mater. 23, 3455 (2011).CrossRef
Mattheus, C.C., de Wijs, G.A., de Groot, R.A., Palstra, T.T.M., J. Am. Chem. Soc. 125, 6323 (2003).CrossRef
Mannsfeld, S.C.B., Virkar, A., Reese, C., Toney, M.F., Bao, Z.N., Adv. Mater. 21, 2294 (2009).CrossRef
Yoshimoto, S., Kobayashi, N., Supramolecular Nanostructures of Phthalocyanines and Porphyrins at Surfaces Based on the “Bottom-Up Assembly” (Springer, Berlin/Heidelberg, 2010).CrossRefGoogle Scholar
Bonifazi, D., Kiebele, A., Stohr, M., Cheng, F.Y., Jung, T., Diederich, F., Spillmann, H., Adv. Funct. Mater. 17, 1051 (2007).CrossRef
Chen, Q., McDowall, A.J., Richardson, N.V., Chem. Mater. 15, 4113 (2003).CrossRef
Chen, T., Pan, G.-B., Yan, H.-J., Wan, L.-J., Matsuo, Y., Nakamura, E., J. Phys. Chem. C 114, 3170 (2010).CrossRef
Fendrich, M., Wagner, T., Stohr, M., Moller, R., Phys. Rev. B 73, 115433 (2006).CrossRef
Wakayama, Y., de Oteyza, D.G., Garcia-Lastra, J.M., Mowbray, D.J., ACS Nano 5, 581 (2011).CrossRef
de Wild, M., Berner, S., Suzuki, H., Yanagi, H., Schlettwein, D., Ivan, S., Baratoff, A., Guentherodt, H.J., Jung, T.A., ChemPhysChem 3, 881 (2002).3.0.CO;2-P>CrossRef
Wei, Y., Reutt-Robey, J.E., J. Am. Chem. Soc. 133, 15232 (2011).CrossRef
Blunt, M.O., Russell, J.C., Gimenez-Lopez, M.d.C., Taleb, N., Lin, X., Schroder, M., Champness, N.R., Beton, P.H., Nat. Chem. 3, 74 (2011).CrossRef
Cheng, H.L., Lin, J.W., Cryst. Growth Des. 10, 4501 (2010).CrossRef
Giri, G., Verploegen, E., Mannsfeld, S.C.B., Atahan-Evrenk, S., Kim, D.H., Lee, S.Y., Becerril, H.A., Aspuru-Guzik, A., Toney, M.F., Bao, Z., Nature 480, 504 (2011).CrossRef
Bag, P.P., Patni, M., Reddy, C.M., CrystEngComm 13, 5650 (2011).CrossRef
Lopez-Mejias, V., Knight, J.L., Brooks, C.L. III, Matzger, A.J., Langmuir 27, 7575 (2011).CrossRef
Beiner, M., Rengarajan, G.T., Pankaj, S., Enke, D., Steinhart, M., Nano Lett. 7, 1381 (2007).CrossRef
Mitchell, C.A., Yu, L., Ward, M.D., J. Am. Chem. Soc. 123, 10830 (2001).CrossRef
Li, R.J., Hu, W.P., Liu, Y.Q., Zhu, D.B., Acc. Chem. Res. 43, 529 (2010).CrossRef
Menard, E., Meitl, M.A., Sun, Y.G., Park, J.U., Shir, D.J.L., Nam, Y.S., Jeon, S., Rogers, J.A., Chem. Rev. 107, 1117 (2007).CrossRef
Briseno, A.L., Aizenberg, J., Han, Y.J., Penkala, R.A., Moon, H., Lovinger, A.J., Kloc, C., Bao, Z.N., J. Am. Chem. Soc. 127, 12164 (2005).CrossRef
Briseno, A.L., Mannsfeld, S.C.B., Ling, M.M., Liu, S.H., Tseng, R.J., Reese, C., Roberts, M.E., Yang, Y., Wudl, F., Bao, Z.N., Nature 444, 913 (2006).CrossRef
Mannsfeld, S.C.B., Briseno, A.L., Liu, S., Reese, C., Roberts, M.E., Bao, Z., Adv. Funct. Mater. 17, 3545 (2007).CrossRef
Liu, S., Briseno, A.L., Mannsfeld, S.C.B., You, W., Locklin, J., Lee, H.W., Xia, Y., Bao, Z., Adv. Funct. Mater. 17, 2891 (2007).CrossRef
Liu, S.H., Mannsfeld, S.C.B., Wang, W.M., Sun, Y.S., Stoltenberg, R.M., Bao, Z.N., Chem. Mater. 21, 15 (2009).CrossRef
Laudise, R.A., Kloc, C., Simpkins, P.G., Siegrist, T., J. Cryst. Growth 187, 449 (1998).CrossRef
Liu, S.H., Wang, W.C.M., Mannsfeld, S.C.B., Locklin, J., Erk, P., Gomez, M., Richter, F., Bao, Z.N., Langmuir 23, 7428 (2007).CrossRef
Mannsfeld, S.C.B., Sharei, A., Liu, S.H., Roberts, M.E., McCulloch, I., Heeney, M., Bao, Z.N., Adv. Mater. 20, 4044 (2008).CrossRef
Akkerman, H.B., Li, H.Y., Bao, Z.N., Org. Electron. 13, 235 (2012).CrossRef
Qin, D., Xia, Y.N., Whitesides, G.M., Nat. Protoc. 5, 491 (2010).CrossRef
Siegrist, T., Kloc, C., Laudise, R.A., Katz, H.E., Haddon, R.C., Adv. Mater. 10, 379 (1998).3.0.CO;2-A>CrossRef
Kloc, C., Simpkins, P.G., Siegrist, T., Laudise, R.A., J. Cryst. Growth 182, 416 (1997).CrossRef
Bae, I., Kang, S.J., Shin, Y.J., Park, Y.J., Kim, R.H., Mathevet, F., Park, C., Adv. Mater. 23, 3398 (2011).CrossRef
Briseno, A.L., Tseng, R.J., Ling, M.M., Falcao, E.H.L., Yang, Y., Wudl, F., Bao, Z.N., Adv. Mater. 18, 2320 (2006).CrossRef
Lee, H.M., Kim, J.J., Choi, J.H., Cho, S.O., ACS Nano 5, 8352 (2011).CrossRef
Li, R., Jiang, L., Meng, Q., Gao, J., Li, H., Tang, Q., He, M., Hu, W., Liu, Y., Zhu, D., Adv. Mater. 21, 4492 (2009).CrossRef
Reese, C., Bao, Z.N., Adv. Mater. 19, 4535 (2007).CrossRef
He, T., Zhang, X., Jia, J., Li, Y., Tao, X., Adv. Mater. 24, 2171 (2012).CrossRef
Rogowski, R.Z., Dzwilewski, A., Kemerink, M., Darhuber, A.A., J. Phys. Chem. C 115, 11758 (2011).CrossRef
Li, L.Q., Gao, P., Schuermann, K.C., Ostendorp, S., Wang, W.C., Du, C.A., Lei, Y., Fuchs, H., De Cola, L., Mullen, K., Chi, L.F., J. Am. Chem. Soc. 132, 8807 (2010).CrossRef
Becerril, H.A., Roberts, M.E., Liu, Z.H., Locklin, J., Bao, Z.N., Adv. Mater. 20, 2588 (2008).CrossRef
Liu, Z.H., Becerril, H.A., Roberts, M.E., Nishi, Y., Bao, Z., IEEE Trans. Electron Devices 56, 176 (2009).CrossRef
Pisula, W., Menon, A., Stepputat, M., Lieberwirth, I., Kolb, U., Tracz, A., Sirringhaus, H., Pakula, T., Mullen, K., Adv. Mater. 17, 684 (2005).CrossRef
Pisula, W., Tomovic, Z., Stepputat, M., Kolb, U., Pakula, T., Mullen, K., Chem. Mater. 17, 2641 (2005).CrossRef
Duffy, C.M., Andreasen, J.W., Breiby, D.W., Nielsen, M.M., Ando, M., Minakata, T., Sirringhaus, H., Chem. Mater. 20, 7252 (2008).CrossRef
Uemura, T., Hirose, Y., Uno, M., Takimiya, K., Takeya, J., Appl. Phys. Express 2, 111501 (2009).CrossRef
Hong, J.P., Lee, S., Angew. Chem. Int. Ed. 48, 3096 (2009).CrossRef
Li, H.Y., Tee, B.C.K., Giri, G., Chung, J.W., Lee, S.Y., Bao, Z.N., Adv. Mater. 2588 (2012).CrossRefPubMed
Wang, C., Dong, H., Hu, W., Liu, Y., Zhu, D., Chem. Rev. 112, 2208 (2012).CrossRef

This addendum applies to the following article(s):

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Toward high-mobility organic field-effect transistors: Control of molecular packing and large-area fabrication of single-crystal-based devices
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Toward high-mobility organic field-effect transistors: Control of molecular packing and large-area fabrication of single-crystal-based devices
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Toward high-mobility organic field-effect transistors: Control of molecular packing and large-area fabrication of single-crystal-based devices
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *