Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-l8tfn Total loading time: 0.376 Render date: 2022-06-28T19:21:49.036Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Article contents

Using plasmonically generated carriers as redox equivalents

Published online by Cambridge University Press:  10 January 2020

Sungju Yu
Affiliation:
Department of Chemistry, University of Illinois at Urbana-Champaign, USA; yus@illinois.edu
Varun Mohan
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, USA; vmohan8@illinois.edu
Prashant K. Jain
Affiliation:
Department of Chemistry, Materials Research Laboratory, Department of Physics, and Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA; jain@illinois.edu
Get access

Abstract

Nanostructures of plasmonic metals naturally combine strong light–matter interactions with catalytic activity, enabling new opportunities for light harvesting, catalytic chemistry, and artificial photosynthesis. Numerous studies have demonstrated that the optical excitation of localized surface plasmons generates hot electrons that can activate adsorbates triggering or facilitating chemical reactions on the surface of the nanoparticle. Going beyond such hot-electron-activated chemistry, a body of studies has shown that electron and hole carriers can be harvested from a plasmonically excited nanoparticle and utilized as redox equivalents for driving chemical reactions involving charge transfer. This article reviews such photoredox chemistry driven by plasmonic excitation of metal nanoparticles. Under certain conditions, a plasmonically excited nanoparticle can catalyze multielectron, multiproton transformations such as the photosynthesis of CO2 to hydrocarbons. We describe how the free energy of plasmonically generated charge carriers can be harvested and utilized for thermodynamically uphill reactions involving the formation of energy-rich chemical bonds or the development of molecular complexity. We end with a discussion of future opportunities in plasmon-excitation-driven photoredox chemistry.

Type
Materials for Hot-Carrier Chemistry
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nitzan, A., Brus, L.E., J. Chem. Phys. 75, 2205 (1981).10.1063/1.442333CrossRefGoogle Scholar
Nitzan, A., Brus, L.E., J. Chem. Phys. 74, 5321 (1981).10.1063/1.441699CrossRefGoogle Scholar
Christopher, P., Xin, H., Linic, S., Nat. Chem. 3, 467 (2011).10.1038/nchem.1032CrossRefGoogle Scholar
Christopher, P., Xin, H., Marimuthu, A., Linic, S., Nat. Mater. 11, 1044 (2012).10.1038/nmat3454CrossRefGoogle Scholar
Mukherjee, S., Libisch, F., Large, N., Neumann, O., Brown, L.V., Cheng, J., Lassiter, B., Carter, E.A., Nordlander, P., Halas, N.J., Lassiter, J.B., Carter, E.A., Nordlander, P., Halas, N.J., Nano Lett . 13, 240 (2013).10.1021/nl303940zCrossRefGoogle Scholar
Mukherjee, S., Zhou, L., Goodman, A.M., Large, N., Ayala-Orozco, C., Zhang, Y., Nordlander, P., Halas, N.J., J. Am. Chem. Soc. 136, 64 (2014).10.1021/ja411017bCrossRefGoogle Scholar
Marimuthu, A., Zhang, J., Linic, S., Science 339, 1590 (2013).CrossRefGoogle Scholar
Huang, Y.F., Zhu, H.P., Liu, G.K., Wu, D.Y., Ren, B., Tian, Z.Q., J. Am. Chem. Soc. 132, 9244 (2010).10.1021/ja101107zCrossRefGoogle Scholar
Zhang, Z., Kinzel, D., Deckert, V., J. Phys. Chem. C 120, 20978 (2016).CrossRefGoogle Scholar
Jain, P.K., J. Phys. Chem. C 123, 24347 (2019).CrossRefGoogle Scholar
Hou, W., Hung, W.H., Pavaskar, P., Goeppert, A., Aykol, M., Cronin, S.B., ACS Catal . 1, 929 (2011).10.1021/cs2001434CrossRefGoogle Scholar
Link, S., El-Sayed, M.A., J. Phys. Chem. B 103, 8410 (1999).CrossRefGoogle Scholar
Hodak, J.H., Martini, I., Hartland, G.V., J. Phys. Chem. B 102, 6958 (1998).CrossRefGoogle Scholar
Jain, P.K., Qian, W., El-Sayed, M.A., J. Am. Chem. Soc. 128, 2426 (2006).CrossRefGoogle Scholar
Jain, P.K., Qian, W., El-Sayed, M.A., J. Phys. Chem. B 110, 136 (2006).10.1021/jp055562pCrossRefGoogle Scholar
Hartland, G.V., Besteiro, L.V., Johns, P., Govorov, A.O., ACS Energy Lett . 2, 1641 (2017).CrossRefGoogle Scholar
Hodak, J.H., Henglein, A., Hartland, G.V., J. Phys. Chem. B 104, 9954 (2000).CrossRefGoogle Scholar
Persson, B.N.J., Surf. Sci. 281, 153 (1993).CrossRefGoogle Scholar
Boerigter, C., Campana, R., Morabito, M., Linic, S., Nat. Commun. 7, 10545 (2016).CrossRefGoogle Scholar
Foerster, B., Spata, V.A., Carter, E.A., Sönnichsen, C., Link, S., Sci. Adv. 5, 1 (2019).10.1126/sciadv.aav0704CrossRefGoogle Scholar
Seemala, B., Therrien, A.J., Lou, M., Li, K., Finzel, J.P., Qi, J., Nordlander, P., Christopher, P., ACS Energy Lett . 4, 1803 (2019).CrossRefGoogle Scholar
Kim, Y., Dumett Torres, D., Jain, P.K., Nano Lett . 16, 3399 (2016).CrossRefGoogle Scholar
Jin, R., Cao, Y., Mirkin, C.A., Kelly, K.L., Schatz, G.C., Zheng, J.G., Science 294, 1901 (2001).CrossRefGoogle Scholar
Maillard, M., Huang, P., Brus, L., Nano Lett . 3, 1611 (2003).CrossRefGoogle Scholar
Wu, X., Redmond, P.L., Liu, H., Chen, Y., Steigerwald, M., Brus, L., J. Am. Chem. Soc. 130, 9500 (2008).CrossRefGoogle Scholar
Redmond, P.L., Wu, X., Brus, L., J. Phys. Chem. C 111, 8942 (2007).10.1021/jp0710436CrossRefGoogle Scholar
Redmond, P.L., Brus, L.E., J. Phys. Chem. C 111, 14849 (2007).10.1021/jp0741859CrossRefGoogle Scholar
Thrall, E.S., Steinberg, A.P., Wu, X., Brus, L.E., J. Phys. Chem. C 117, 26238 (2013).CrossRefGoogle Scholar
Kim, Y., Wilson, A.J., Jain, P.K., ACS Catal . 7, 4360 (2017).10.1021/acscatal.7b01318CrossRefGoogle Scholar
Zhai, Y., DuChene, J.S., Wang, Y.C., Qiu, J., Johnston-Peck, A.C., You, B., Guo, W., Diciaccio, B., Qian, K., Zhao, E.W., Ooi, F., Hu, D., Su, D., Stach, E.A., Zhu, Z., Wei, W.D., Nat. Mater. 15, 889 (2016).CrossRefGoogle Scholar
Brus, L., Nat. Mater. 15, 824 (2016).10.1038/nmat4698CrossRefGoogle Scholar
Ngoc, L.L.T., Wiedemair, J., van den Berg, A., Carlen, E.T., Opt. Express 23, 5547 (2015).CrossRefGoogle Scholar
Kim, Y., Smith, J.G., Jain, P.K., Nat. Chem. 10, 763 (2018).CrossRefGoogle Scholar
Sheldon, M.T., Van De Groep, J., Brown, A.M., Polman, A., Atwater, H.A., Science 346, 828 (2014).CrossRefGoogle Scholar
Kang, X., Jin, Y., Cheng, G., Dong, S., Langmuir 18, 1713 (2002).10.1021/la0155303CrossRefGoogle Scholar
Chu, S., Majumdar, A., Nature 488, 294 (2012).CrossRefGoogle Scholar
Olah, G.A., Prakash, G.K.S., Goeppert, A., J. Am. Chem. Soc. 133, 12881 (2011).CrossRefGoogle Scholar
Yu, S., Wilson, A.J., Kumari, G., Zhang, X., Jain, P.K., ACS Energy Lett . 2, 2058 (2017).10.1021/acsenergylett.7b00640CrossRefGoogle Scholar
Wuttig, A., Yoon, Y., Ryu, J., Surendranath, Y., J. Am. Chem. Soc. 139, 17109 (2017).CrossRefGoogle Scholar
Manthiram, K., Surendranath, Y., Alivisatos, A.P., J. Am. Chem. Soc. 136, 7237 (2014).10.1021/ja502628rCrossRefGoogle Scholar
Chen, Y., Li, C.W., Kanan, M.W., J. Am. Chem. Soc. 134, 19969 (2012).CrossRefGoogle Scholar
Yu, S., Wilson, A.J., Heo, J., Jain, P.K., Nano Lett . 18, 2189 (2018).CrossRefGoogle Scholar
Neaţu, Ş., Maciá-Agulló, J.A., Concepción, P., Garcia, H., J. Am. Chem. Soc. 136, 15969 (2014).CrossRefGoogle Scholar
Kumar, D., Lee, A., Lee, T., Lim, M., Lim, D.K., Nano Lett . 16, 1760 (2016).10.1021/acs.nanolett.5b04764CrossRefGoogle Scholar
Zhang, X., Li, X., Zhang, D., Su, N.Q., Yang, W., Everitt, H.O., Liu, J., Nat. Commun. 8, 14542 (2017).CrossRefGoogle Scholar
Kumari, G., Zhang, X., Devasia, D., Heo, J., Jain, P.K., ACS Nano 12, 8330 (2018).CrossRefGoogle Scholar
Yu, S., Jain, P.K., Nat. Commun. 10, 2022 (2019).CrossRefGoogle Scholar
Yu, S., Jain, P.K., ACS Energy Lett . 4, 2295 (2019).CrossRefGoogle Scholar
Tu, W., Zhou, Y., Li, H., Li, P., Zou, Z., Nanoscale 7, 14232 (2015).CrossRefGoogle Scholar
Wilson, A.J., Jain, P.K., J. Am. Chem. Soc. 140, 5853 (2018).CrossRefGoogle Scholar
Lee, J., Mubeen, S., Ji, X., Stucky, G.D., Moskovits, M., Nano Lett . 12, 5014 (2012).CrossRefGoogle Scholar
Mubeen, S., Lee, J., Singh, N., Krämer, S., Stucky, G.D., Moskovits, M., Nat. Nanotechnol. 8, 247 (2013).CrossRefGoogle Scholar
Zhang, X., Kumari, G., Heo, J., Jain, P.K., Nat. Commun. 9, 3056 (2018).CrossRefGoogle Scholar
Prier, C.K., Rankic, D.A., MacMillan, D.W.C., Chem. Rev. 113, 5322 (2013).CrossRefGoogle Scholar
Ota, E., Wang, H., Frye, N.L., Knowles, R.R., J. Am. Chem. Soc. 141, 1457 (2019).CrossRefGoogle Scholar
Yoon, T.P., Ischay, M.A., Du, J., Nat. Chem. 2, 527 (2010).CrossRefGoogle Scholar
Peters, B.K., Rodriguez, K.X., Reisberg, S.H., Beil, S.B., Hickey, D.P., Kawamata, Y., Collins, M., Starr, J., Chen, L., Udyavara, S., Klunder, K., Gorey, T.J., Anderson, S.L., Neurock, M., Minteer, S.D., Baran, P.S., Science 363, 838 (2019).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Using plasmonically generated carriers as redox equivalents
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Using plasmonically generated carriers as redox equivalents
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Using plasmonically generated carriers as redox equivalents
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *