Skip to main content Accessibility help

ALD for clean energy conversion, utilization, and storage

  • Jeffrey W. Elam (a1), Neil P. Dasgupta (a2) and Fritz B. Prinz (a3)

Atomic layer deposition (ALD) uses self-limiting chemical reactions between gaseous precursors and a solid surface to deposit materials in a layer-by-layer fashion. This process results in a unique combination of attributes, including sub-nm precision, the capability to engineer surfaces and interfaces, and unparalleled conformality over high-aspect ratio and nanoporous structures. Given these capabilities, ALD could play a central role in achieving the technological advances necessary to redirect our economy from fossil-based energy to clean, renewable energy. This article will survey some of the recent work applying ALD to clean energy conversion, utilization, and storage, including research in solid oxide fuel cells, thin-film photovoltaics, lithium-ion batteries, and heterogenous catalysts. Throughout the manuscript, we will emphasize how the unique qualities of ALD can enhance device performance and enable radical new designs.

Hide All
1.Lewis, N.S., Basic Research Needs for Solar Energy Utilization, Report on the Basic Energy Sciences Workshop on Solar Energy Utilization; U.S. Department of Energy, Office of Science: 2005.
2.Ritala, M., Leskelä, M., in Atomic Layer Deposition. In Handbook of Thin Film Materials, Nalwa, H.S., Ed. (Academic Press, San Diego, CA, 2001), Vol. 1, p. 103.
3.George, S.M., Chem. Rev. 110 (1), 111 (2010).
4.Rolison, D.R., Long, R.W., Lytle, J.C., Fischer, A.E., Rhodes, C.P., McEvoy, T.M., Bourga, M.E., Lubers, A.M., Chemical Society Reviews 38 (1), 226 (2009).
5.O’Hayre, R., Cha, S.-W., Colella, W., Prinz, F.B., Fuel Cell Fundamentals (Wiley, New York, NY, 2009).
6.Cassir, M., Ringuede, A., Niinisto, L., J. Mater. Chem. 20 (41), 8987 (2010).
7.Putkonen, M., Sajavaara, T., Niinisto, J., Johansson, L.S., Niinisto, L., J. Mater. Chem. 12 (3), 442 (2002).
8.Bernay, C., Ringuede, A., Colomban, P., Lincot, D., Cassir, M., J. Phys. Chem. Solids 74 (9–10), 1761 (2003).
9.Shim, J.H., Chao, C.C., Huang, H., Prinz, F.B., Chem. Mater. 19 (15), 3850 (2007).
10.Huang, H., Nakamura, M., Su, P.C., Fasching, R., Saito, Y., Prinz, F.B., J. Electrochem. Soc. 154 (1), B20 (2007).
11.Huang, H., Shim, J.H., Chao, C.C., Pornprasertsuk, R., Sugawara, M., Gur, T.M., Prinz, F.B., J. Electrochem. Soc. 156 (3), B392 (2009).
12.Su, P.C., Chao, C.C., Shim, J.H., Fasching, R., Prinz, F.B., Nano Lett. 8 (8), 2289 (2008).
13.Chao, C.C., Hsu, C.M., Cui, Y., Prinz, F.B., ACS Nano (2011), doi:10.1021/nn201354p.
14.Park, J.S., Kim, Y.B., Shim, J.H., Kang, S., Gur, T.M., Prinz, F.B., Chem. Mater. 22 (18), 5366 (2010).
15.Shim, J.H., Park, J.S., An, J., Gur, T.M., Kang, S., Prinz, F.B., Chem. Mater. 21 (14), 3290 (2009).
16.Holme, T.P., Lee, C., Prinz, F.B., Solid State Ionics 179 (27–32), 1540 (2008).
17.Chao, C.C., Kim, Y.B., Prinz, F.B., Nano Lett. 9 (10), 3626 (2009).
18.Gourba, E., Ringuede, A., Cassir, M., Billard, A., Paiviasaari, J., Niinisto, J., Putkonen, M., Niinisto, L., Ionics 9 (1–2), 15 (2003).
19.Ballee, E., Ringuede, A., Cassir, M., Putkonen, M., Niinisto, L., Chem. Mater. 21 (19), 4614 (2009).
20.Fan, Z., Prinz, F.B., Nano Lett. 11 (6), 2202 (2011).
21.Fan, Z., Chao, C.-C., Hossein-Babaei, F., Prinz, F.B., J. Mater. Chem. 21, 10903 (2011).
22.Jiang, X.R., Huang, H., Prinz, F.B., Bent, S.F., Chem. Mater. 20 (12), 3897 (2008).
23.Shim, J.H., Jiang, X., Bent, S.F., Prinz, F.B., J. Electrochem. Soc. 157 (6), B793 (2010).
24.Marom, R., Amalraj, S.F., Leifer, N., Jacob, D., Aurbach, D., J. Mater. Chem. 21 (27), 9938 (2011).
25.Xu, K., von Cresce, A., J. Mater. Chem. 21 (27), 9849 (2011).
26.Myung, S.T., Hitoshi, Y., Sun, Y.K., J. Mater. Chem. 21 (27), 9891 (2011).
27.Jung, Y.S., Cavanagh, A.S., Riley, L.A., Kang, S.H., Dillon, A.C., Groner, M.D., George, S.M., Lee, S.H., Adv. Mater. 22 (19), 2172 (2010).
28.Riley, L.A., Van Ana, S., Cavanagh, A.S., Yan, Y.F., George, S.M., Liu, P., Dillon, A.C., Lee, S.H., J. Power Sources 196 (6), 3317 (2011).
29.Aaltonen, T., Alnes, M., Nilsen, O., Costelle, L., Fjellvag, H., J. Mater. Chem. 20 (14), 2877 (2010).
30.Putkonen, M., Aaltonen, T., Alnes, M., Sajavaara, T., Nilsen, O., Fjellvag, H., J. Mater. Chem. 19 (46), 8767 (2009).
31.Alsema, E.A., De Wild-Scholten, M.J., Life-Cycle Analysis Tools for Green Materials and Process Selection 895, 73 (2006).
32.Reijnen, L., Feddes, B., Vredenberg, A.M., Schoonman, J., Goossens, A., J. Phys. Chem. B 108 (26), 9133 (2004).
33.Gratzel, M., J. Photochem. Photobiol. C 4, 145 (2003).
34.Law, M., Greene, L.E., Radenovic, A., Kuykendall, T., Liphardt, J., Yang, P., J. Phys. Chem. B 110 (45), 22652 (2006).
35.Hamann, T.W., Martinson, A.B.E., Elam, J.W., Pellin, M.J., Hupp, J.T., Adv. Mater. 20 (8), 1560 (2008).
36.Hamann, T.W., Martinson, A.B.F., Elam, J.W., Pellin, M.J., Hupp, J.T., J. Phys. Chem. C 112 (27), 10303 (2008).
37.Martinson, A.B.F., Elam, J.W., Hupp, J.T., Pellin, M.J., Nano Lett. 7 (8), 2183 (2007).
38.Martinson, A.B.F., Elam, J.W., Liu, J., Pellin, M.J., Marks, T.J., Hupp, J.T., Nano Lett. 8 (9), 2862 (2008).
39.Shockley, W., Queisser, H.J., J. Appl. Phys. 32 (3), 510 (1961).
40.Tisdale, W.A., Williams, K.J., Timp, B.A., Norris, D.J., Aydil, E.S., Zhu, X.Y., Science 328 (5985), 1543 (2010).
41.Nozik, A.J., Chem. Phys. Lett. 457 (1–3), 3 (2008).
42.McGuire, J.A., Joo, J., Pietryga, J.M., Schaller, R.D., Klimov, V.I., Acc. Chem. Res. 41 (12), 1810 (2008).
43.Sukhovatkin, V., Hinds, S., Brzozowski, L., Sargent, E.H., Science 324 (5934), 1542 (2009).
44.Sargent, E.H., Nat. Photon. 3 (6), 325 (2009).
45.Wang, X., Koleila, G.I., Tang, J., Liu, H., Kramer, I.J., Debnath, R., Brzozowski, L., Barkhouse, D.A.R., Levina, L., Hoogland, S., Sargent, E.H., Nat. Photon. 5, 480 (2011).
46.Dutta, A.K., Ho, T.T., Zhang, L.Q., Stroeve, P., Chem. Mater. 12 (4), 1042 (2000).
47.Leskelä, M., Niinisto, L., Niemela, P., Nykanen, E., Soininen, P., Tiitta, M., Vahakangas, J., Vacuum 41 (4–6), 1457 (1990).
48.Nykanen, E., Laineylijoki, J., Soininen, P., Niinisto, L., Leskelä, M., Hubertpfalzgraf, L.G., J. Mater. Chem. 4 (9), 1409 (1994).
49.Dasgupta, N.P., Lee, W., Prinz, F.B., Chem. Mater. 21 (17), 3973 (2009).
50.Dasgupta, N.P., Jung, H.J., Trejo, O., McDowell, M.T., Hryciw, A., Brongersma, M., Sinclair, R., Prinz, F.B., Nano Lett. 11 (3), 934 (2011).
51.Lee, W., Dasgupta, N.P., Jung, H.J., Lee, J.-R., Sinclair, R., Prinz, F.B., Nanotechnology 21, 485402 (2010).
52.Pourret, A., Guyot-Sionnest, P., Elam, J.W., Adv. Mater. 21 (2), 232 (2009).
53.Lambert, K., Dendooven, J., Detavernier, C., Hens, Z., Chem. Mater. 23 (2), 126 (2011).
54.Ozokwelu, D., Porcelli, J., Akinjiola, P., Chemical Bandwidth Study; U.S. Department of Energy, Energy Efficiency and Renewable Energy Program, 2006.
55.Feng, H., Elam, J.W., Libera, J.A., Setthapun, W., Stair, P.C., Chem. Mater. 22 (10), 3133 (2010).
56.Feng, H., Lu, J.L., Stair, P.C., Elam, J.W., Catalysis Letters 141 (4), 512 (2011).
57.Christensen, S.T., Elam, J.W., Rabuffetti, F.A., Ma, Q., Weigand, S.J., Lee, B., Seifert, S., Stair, P.C., Poeppelmeier, K.R., Hersam, M.C., Bedzyk, M.J., Small 5 (6), 750 (2009).
58.Christensen, S.T., Elam, J.W., Chem. Mater. 22 (8), 2517 (2010).
59.Christensen, S.T., Feng, H., Libera, J.L., Guo, N., Miller, J.T., Stair, P.C., Elam, J.W., Nano Lett. 10 (8), 3047 (2010).
60.Feng, H., Elam, J.W., Libera, J.A., Pellin, M.J., Stair, P.C., J. Catal. 269 (2), 421 (2010).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed