Skip to main content
    • Aa
    • Aa

Atom-by-atom fabrication by electron beam via induced phase transformations

  • Nan Jiang (a1), Eva Zarkadoula (a2), Prineha Narang (a3), Artem Maksov (a4), Ivan Kravchenko (a5), Albina Borisevich (a6), Stephen Jesse (a7) and Sergei V. Kalinin (a8)...

New developments in manufacturing and automation, from three-dimensional printing to the “Internet of things,” signify dramatic changes in our society. The push toward quantum materials is driving device fabrication toward atomic precision. Recent results suggest that scanning transmission electron microscopy (STEM) with sub-angstrom scale beams could offer a solution. However, a detailed theoretical understanding of the interaction of the electron beam with solids is needed to form a basis for new technology. This article summarizes the existing literature on electron-beam interactions with solids with a focus on irreversible transformation. We further suggest that the theoretical framework of a two-temperature model developed for fast ion damage in solids could be applicable to predicting the effects of fast electrons. Recent results from STEM-directed epitaxial growth on crystalline–amorphous interfaces are discussed in detail. Finally, perspectives on the development of this field in the near future are offered.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 10
Total number of PDF views: 71 *
Loading metrics...

Abstract views

Total abstract views: 415 *
Loading metrics...

* Views captured on Cambridge Core between 8th September 2017 - 18th October 2017. This data will be updated every 24 hours.