Skip to main content

Atomic Control of the Electronic Structure at Complex Oxide Heterointerfaces


The following article is based on the Outstanding Young Investigator Award presentation given by Harold Y. Hwang of the University of Tokyo on March 29, 2005, at the Materials Research Society Spring Meeting in San Francisco. Hwang was cited for “innovative work on the physics of transition-metal oxides and the atomic-scale synthesis of complex oxide heterostructures.” Perovskite oxides range from insulators to superconductors and can incorporate magnetism as well as couple to phonon instabilities. The close lattice match between many perovskites raises the possibility of growing epitaxial thin-film heterostructures with different ground states that may compete or interact. The recent development of superconducting Josephson junctions, magnetic tunnel junctions, ferroelectric memory cells, and resistive switching can be considered examples within this new heteroepitaxial family. In this context, Hwang presents his studies of electronic structure at atomically abrupt interfaces grown by pulsed laser deposition. Some issues are generic to all heterointerfaces, such as the stability of dopant profiles and diffusion, interface states and depletion, and interface charge arising from polarity discontinuities. A more unusual issue is the charge structure associated with Mott insulator/band insulator interfaces. The question is, how should one consider the correlated equivalent of band bending? This semiconductor concept is based on the validity of rigid single-particle band diagrams, which are known to be an inadequate description for strongly correlated electrons. In addition to presenting an interesting scientific challenge, this question underlies the attempts to develop new applications of doped Mott insulators in device geometries.

Hide All
1For example, see Tsuda N.Nasu K.Fujimori A. and Siratori K.Electronic Conduction in Oxides (Springer-Verlag, Berlin, 2000).
2Dagotto E.Science 309 (2005) p. 257.
3Bednorz J.G. and Mueller K.A.Z. Phys. B 64 (1986) p. 189.
4For example, see Eckstein J.N.Bozovic I.Klausmeier-Brown M.E., Virshup G.F. and Ralls K.S.MRS Bull. 17 (8) (1992) p. 27.
5Auciello O.Scott J.F. and Ramesh R.Phys. Today 51 (7) (1998) p. 22.
6For a review, see Tokura Y. ed., Colossal Magnetoresistive Oxides (Gordon and Breach, New York, 2000).
7For example, see Koinuma H. ed., “Crystal Engineering of High Tc-Related Oxide Films,” MRS Bull. 19 (9) (1994) p. 21.
8Weisbuch C. and Vinter B.Quantum Semiconductor Structures: Fundamentals and Applications (Academic Press, London, 1991).
9Chambers S.A. and Yoo Y.K. eds., “New Materials for Spintronics,” MRS Bull. 28 (10) (2003) p. 706.
10Klitzing K.v.Dorda G. and Pepper M.Phys. Rev. Lett. 45 (1980) p. 494.
11Ahn C.H.Triscone J.-M. and Mannhart J.Nature 424 (2004) p. 1015.
12Chrisey D.B. and Hubler G.K., eds., Pulsed Laser Deposition of Thin Films (Wiley, New York, 1994).
13Braun W.Applied RHEED (Springer, Berlin, 1999).
14Rijnders G.J.H.M., Koster G.Blank D.H.A. and Rogalla H.Appl. Phys. Lett. 70 (1997) p. 1888.
15As an example for Tl-based cuprates, see Shimakawa Y.Kubo Y.Manako T. and Igarashi H.Phys. Rev. B 40 (1989) p. 11400.
16Gong W.Yun H.Ning Y.B.Greedan J.E.Datars W.R. and Stager C.V.J. Solid State Chem. 90 (1991) p. 320.
17Hwang H.Y.Ohtomo A.Nakagawa N.Muller D.A. and Grazul J.L.Physica E 22 (2004) p. 712.
18Frederikse H.P.R.Thurber W.R. and Hosler W.R.Phys. Rev. 134 (1964) p. A442.
19Schooley J.F.Hosler W.R. and Cohen M.L.Phys. Rev. Lett. 12 (1964) p. 474.
20Muller D.A.Nakagawa N.Ohtomo A.Grazul J.L. and Hwang H.Y.Nature 430 (2004) p. 657.
21Tokura Y.Taguchi Y.Okada Y.Fujishima Y.Arima T.Kumagai K. and Iye Y.Phys. Rev. Lett. 70 (1993) p. 2126.
22Ohtomo A.Muller D.A.Grazul J.L. and Hwang H.Y.Nature 419 (2002) p. 378.
23Ohtomo A.Muller D.A.Grazul J.L. and Hwang H.Y.Appl. Phys. Lett. 80 (2002) p. 3922.
24Hamann D.R. unpublished.
25For an example of delta-doping in silicon, see Citrin P.H.Muller D.A.Gossmann H.-J., Vanfleet R. and Northrup P.A.Phys. Rev. Lett. 83 (1999) p. 3234.
26Okamoto S. and Millis A.J.Nature 428 (2004) p. 630.
27See the Nobel Lecture by Herbert Kroemer in Ekspong G. ed., Nobel Lectures, Physics 1996-2000 (World Scientific, Singapore, 2002).
28Sugiura M.Uragou K.Noda M.Tachiki M. and Kobayashi T.Jpn. J. Appl. Phys. 38 (1999) p. 2675.
29Tanaka H.Zhang J. and Kawai T.Phys. Rev. Lett. 88 027204 (2002).
30Nakagawa N.Asai M.Mukunoki Y.Susaki T., and Hwang H.Y.Appl. Phys. Lett. 86 082504 (2005).
31Baraff G.A.Appelbaum J.A. and Hamann D.R.Phys. Rev. Lett. 38 (1977) p. 237.
32Harrison W.A.Kraut E.A.Waldrop J.R. and Grant R.W.Phys. Rev. B 18 (1978) p. 4402.
33Ohtomo A. and Hwang H.Y.Nature 427 (2004) p. 423.
34Klenov D.O.Schlom D.G.Li H. and Stemmer S.Jpn. J. Appl. Phys. 44 (2005) p. L617.
35Kim D.-W.Kim D.-H., Kang B.-S.Noh T.W.Lee D.R. and Lee K.-B., Appl. Phys. Lett. 74 (1999) p. 2176.
36Mukunoki Y.Nakagawa N.Susaki T. and Hwang H.Y.Appl. Phys. Lett. 86 171908 (2005).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 54 *
Loading metrics...

Abstract views

Total abstract views: 204 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd January 2018. This data will be updated every 24 hours.