Skip to main content Accessibility help
×
Home

Atomic-scale imaging of ultrafast materials dynamics

  • David J. Flannigan (a1) and Aaron M. Lindenberg (a2)

Abstract

The advent of short-pulse electron and x-ray sources has enabled pump-probe approaches for elucidating ultrafast materials dynamics. From such studies, a comprehensive picture of the time-dependent evolution of the initial steps of energy deposition, propagation, relaxation, and conversion in a wide range of materials can be generated. In this article, we provide an overview of the capabilities of femtosecond electron and x-ray scattering for resolving structural dynamics of materials. With such approaches, time resolutions are ultimately limited by the durations of the electron and x-ray pulses, and dynamics can be studied at length scales spanning atomic to mesoscale dimensions. The articles in this issue represent a cross section of the vigorous activity occurring in the study of light-induced ultrafast materials dynamics as it relates to charge carriers, surfaces and interfaces, lattice-coupling mechanisms, coherent structural motions, and next-generation instrument development. The approaches highlighted here are leading to new physical insights, new possibilities for engineering the properties of matter, and ultimately, a new understanding of materials functionality on ultrasmall and ultrashort spatiotemporal scales.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Atomic-scale imaging of ultrafast materials dynamics
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Atomic-scale imaging of ultrafast materials dynamics
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Atomic-scale imaging of ultrafast materials dynamics
      Available formats
      ×

Copyright

References

Hide All
1.Liao, H.-G., Zherebetskyy, D., Xin, H., Czarnik, C., Ercius, P., Elmlund, H., Pan, M., Wang, L.-W., Zheng, H., Science 345, 916 (2014).
2.Kim, K., Coh, S., Kisielowski, C., Crommie, M.F., Louie, S.G., Cohen, M.L., Zettl, A., Nat. Commun. 4, 2723 (2013).
3.Reis, D.A., Lindenberg, A.M., “Ultrafast X-Ray Scattering in Solids,” in Light Scattering in Solids IX, M. Cardona, R. Merlin, Eds. (Springer, Verlag, Berlin, 2007).
4.Zewail, A.H., Annu. Rev. Phys. Chem. 57, 65 (2006).
5.Lindenberg, A.M., Johnson, S.L., Reis, D.A., Annu. Rev. Mater. Res. 47, 425 (2017).
6.Wittenberg, J.S., Miller, T.A., Szilagyi, E., Lutker, K., Quirin, F., Lu, W., Lemke, H., Zhu, D., Chollet, M., Robinson, J., Wen, H., Sokolowski-Tinten, K., Alivisatos, A.P., Lindenberg, A.M., Nano Lett. 14, 1995 (2014).
7.Choe, S.-B., Acremann, Y., Scholl, A., Bauer, A., Doran, A., Stöhr, J., Padmore, H.A., Science 304, 420 (2004).
8.Mannebach, E.M., Nyby, C., Ernst, F., Zhou, Y., Tolsma, J., Li, Y., Sher, M., Tung, I.-C., Zhou, H., Zhang, Q., Seyler, K.L., Clark, G., Lin, Y., Zhu, D., Glownia, J.M., Kozina, M.E., Song, S., Nelson, S., Mehta, A., Yu, Y., Pant, A., Aslan, O., Raja, A., Guo, Y., DiChiara, A., Mao, W., Cao, L., Tongay, S., Sun, J., Singh, D.J., Heinz, T.F., Xu, X., MacDonald, A.H., Reed, E., Wen, H., Lindenberg, A.M., Nano Lett. 17, 7761 (2017).
9.Mannebach, E.M., Li, R., Duerloo, K., Nyby, C., Zalden, P., Vecchione, T., Ernst, F., Reid, A.H., Chase, T., Shen, X., Weathersby, S., Hast, C., Hettel, R., Coffee, R., Hartmann, N., Fry, A.R., Yu, Y., Cao, L., Heinz, T., Reed, E.J., Dürr, H.A., Wang, X., Lindenberg, A.M., Nano Lett. 15, 6889 (2015).
10.Plemmons, D.A., Suri, P.K., Flannigan, D.J., Chem. Mater. 27, 3178 (2015).
11.Weathersby, S.P., Brown, G., Centurion, M., Chase, T.F., Coffee, R., Corbett, J., Eichner, J.P., Frisch, J.C., Fry, A.R., Guehr, M., Hartmann, N., Hast, C., Hettel, R., Jobe, R.K., Jongewaard, E.N., Lewandowski, J.R., Li, R.K., Lindenberg, A.M., Makasyuk, I., May, J.E., McCormick, D., Nguyen, M.N., Reid, A.H., Shen, X., Sokolowski-Tinten, K., Vecchione, T., Vetter, S.L., Wu, J., Yang, J., Durr, H.A., Wang, X.J., Rev. Sci. Instrum. 86, 073702 (2015).
12.Otto, M.R., René de Cotret, L.P., Stern, M.J., Siwick, B.J., Struct. Dyn. 5, 051101 (2017).
13.Bostedt, C., Boutet, S., Fritz, D.M., Huang, Z., Lee, H., Lemke, H.T., Robert, A., Schlotter, W.F., Turner, J.J., Williams, G.J., Rev. Mod. Phys. 88, 015007 (2016).
14.Linac Coherent Light Source, SLAC National Accelerator Laboratory, US Department of Energy Office of Science, “New Science Opportunities Enabled by LCLS-II X-ray Lasers” (2015), https://portal.slac.stanford.edu/sites/lcls_public/Documents/LCLS-IIScienceOpportunities_final.pdf.
15.Kim, K.-J., Huang, Z., Lindberg, R., Synchrotron Radiation and Free-Electron Lasers: Principles of Coherent X-Ray Generation, (Cambridge University Press, Cambridge, UK, 2017).
16.Miller, R.J.D., Science 343, 1108 (2014).
17.Kozina, M., Hu, T., Wittenberg, J.S., Szilagyi, E., Trigo, M., Miller, T.A., Uher, C., Damodaran, A., Martin, L., Mehta, A., Corbett, J., Safranek, J., Reis, D.A., Lindenberg, A.M., Struct. Dyn. 1, 034301 (2014).
18.King, W.E., Campbell, G.H., Frank, A., Reed, B., J. Appl. Phys. 97, 111101 (2005).
19.Zewail, A.H., Science 328, 187 (2010).
20.Adhikari, A., Eliason, J.K., Sun, J., Bose, R., Flannigan, D.J., Mohammed, O.F., ACS Appl. Mater. Interfaces 9, 3 (2017).
21.Cremons, D.R., Plemmons, D.A., Flannigan, D.J., Nat. Commun. 7, 11230 (2016).
22.Cremons, D.R., Du, D.X., Flannigan, D.J., Phys. Rev. Mater. 1, 073801 (2017).
23.Carbone, F., Kwon, O.-H., Zewail, A.H., Science 325, 181 (2009).
24.van der Veen, R.M., Penfold, T.J., Zewail, A.H., Struct. Dyn. 2, 024302 (2015).
25.Horn-von Hoegen, M., MRS Bull. 43 (7), 512 (2018).
26.Frigge, T., Hafke, B., Witte, T., Krenzer, B., Streubühr, C., Samad Syed, A., Mikšić Trontl, V., Avigo, I., Zhou, P., Ligges, M., von der Linde, D., Bovensiepen, U., Horn-von Hoegen, M., Wipperman, S., Lücke, A., Sanna, S., Gerstmann, U., Schmidt, W.G., Nature 544, 207 (2017).
27.Trigo, M., MRS Bull. 43 (7), 520 (2018).
28.Jiang, M.P., Trigo, M., Fahy, S., Murray, É.D., Savić, I., Bray, C., Clark, J., Henighan, T., Kozina, M., Chollet, M., Glownia, J.M., Hoffmann, M., Zhu, D., Delaire, O., May, A.F., Sales, B.C., Lindenberg, A.M., Zalden, P., Sato, T., Merlin, R., Reis, D.A., Nat. Commun. 7, 12291 (2016).
29.Trigo, M., Fuchs, M., Chen, J., Jiang, M.P., Cammarata, M., Fahy, S., Fritz, D.M., Gaffney, K., Ghimire, S., Higginbotham, A., Johnson, S.L., Kozina, M.E., Larsson, J., Lemke, H., Lindenberg, A.M., Ndabashimiye, G., Quirin, F., Sokolowski-Tinten, K., Uher, C., Wark, J.S., Zhu, D., Reis, D.A., Nat. Phys. 9, 790 (2013).
30.Pomarico, E., Kim, Y.-J., García de Abajo, F.J., Kwon, O.-H., Carbone, F., van der Veen, R.M., MRS Bull. 43 (7), 497 (2018).
31.Picher, M., Bucker, K., LaGrange, T., Banhart, F., Ultramicroscopy 188, 41 (2018).
32.Barwick, B., Flannigan, D.J., Zewail, A.H., Nature 462, 902 (2009).
33.Pomarico, E., Madan, I., Berruto, G., Vanacore, G.M., Wang, K., Kaminer, I., García de Abajo, F.J., Carbone, F., ACS Photonics 5, 759 (2018).
34.Yang, D.-S., Liao, B., Mohammed, O.F., MRS Bull. 43 (7), 491 (2018).
35.Yang, D.-S., Mohammed, O.F., Zewail, A.H., Proc. Natl. Acad. Sci. U.S.A. 107, 14993 (2010).
36.Yurtsever, A., Zewail, A.H., Science 326, 708 (2009).
37.Feist, A., da Silva, N.R., Liang, W., Ropers, C., Schaefer, S., Struct. Dyn. 5, 014302 (2018).
38.Feist, A., Storeck, G., Schäfer, S., Ropers, C., MRS Bull. 43 (7), 504 (2018).
39.Qiu, J., Ha, G., Jing, C., Baryshev, S.V., Reed, B.W., Lau, J.W., Zhu, Y., Ultramicroscopy 161, 130 (2016).
40.Verhoeven, W., van Rens, J.F.M., Kieft, E.R., Mutsaers, P.H.A., Luiten, O.J., Ultramicroscopy 188, 85 (2018).
41.van Rens, J.F.M, Verhoeven, W., Franssen, J.G.H., Lassise, A.C., Stragier, X.F.D., Kieft, E.R., Mutsaers, P.H.A., Luiten, O.J., Ultramicroscopy 184, 77 (2018).

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed