Skip to main content Accessibility help

Autonomous materials from biomimicry

  • Jennifer L. Ross (a1)


Biological entities are capable of amazing material feats, such as self-organization, self-repair, self-replication, and self-immolation. Indeed, the most intriguing feature of living biomaterials, whether they are tissues, cells, or intracellular structures, is their ability to autonomously sense, decide, and perform work without the need of a project manager. The effect is multiscale—from enzymes to full organisms, each level is capable of such autonomous activities. Further, each scale has similar energy-using units that work together to compose the larger-scale material. For instance, autonomous cells work together to create tissues. In this article, we will discuss some of the outstanding and desirable properties of active biological materials that we might consider mimicking in future materials. We will discuss how such active materials are powered and explore some fundamental lessons we can learn to direct future fundamental scientific inquiries to begin to understand and use these properties to make synthetic, autonomous materials of the future.



Hide All
1.Riskin, J., The Restless Clock: A History of the Centuries-Long Argument Over What Makes Living Things Tick (University of Chicago Press, Chicago, 2016).
2.Needleman, D., Dogic, Z., Nat. Rev. Mater. 2, 17048 (2017).
3.Zocchi, G., MRS Bull. 44 (2), 124 (2019).
4.Gurtner, G.C., Werner, S., Barrandon, Y., Longaker, M.T., Nature 453, 314 (2008).
5.Aumeier, C., Schaedel, L., Gaillard, J., John, K., Blanchoin, L., Théry, M., Nat. Cell Biol. 18, 1054 (2016).
6.Schaedel, L., John, K., Gaillard, J., Nachury, M.V., Blanchoin, L., Théry, M., Nat. Mater. 14, 1156 (2015).
7.Itzhak, D.N., Tyanova, S., Cox, J., Borner, G.H., elife 5 (2016), doi:10.7554/eLife.16950.
8.Blaiszik, B.J., Kramer, S.L.B., Olugebefola, S.C., Moore, J.S., Sottos, N.R., White, S.R., Annu. Rev. Mater. Res. 40, 179 (2010).
9.Mihashi, H., Nishiwaki, T., J. Adv. Concr. Technol. 10, 170 (2012).
10.Denissen, W., Winne, J.M., Du Prez, F.E., Chem. Sci. 7, 30 (2016).
11.Chaplin, D.D., J. Allergy Clin. Immunol. 125, S3 (2010).
12.Muller, W.A., Vet. Pathol. 50, 7 (2013).
13.Pringle, J., Muthukumar, A., Tan, A., Crankshaw, L., Conway, L., Ross, J.L., J. Phys. Condens. Matter 25, 374103 (2013).
14.Stanhope, K.T., Yadav, V., Santangelo, C., Ross, J., Soft Matter (2017).
15.Lansky, Z., Braun, M., Lüdecke, A., Schlierf, M., ten Wolde, P.R., Janson, M.E., Diez, S., Cell 160, 1159 (2015).
16.Moores, C.A., Pereriset, M., Francis, F., Chelly, J., Houdusse, A., Milligan, R.A., Mol. Cell. 14, 6 (2004).
17.Zhang, J., Grzybowski, B.A., Granick, S., Langmuir 33, 6964 (2017).
18.Walther, A., Müller, A.H.E., Chem. Rev. 113, 5194 (2013).
19.Brown, A., Poon, W., Soft Matter 10, 4016 (2014).
20.Das, S., Garg, A., Campbell, A.I., Howse, J., Sen, A., Velegol, D., Golestanian, R., Ebbens, S.J., Nat. Commun. 6 (2015).
21.Theurkauff, I., Cottin-Bizonne, C., Palacci, J., Ybert, C., Bocquet, L., Phys. Rev. Lett. 108 (2012).
22.Ma, X., Hortelão, A.C., Patiño, T., Sánchez, S., ACS Nano 10, 9111 (2016).
23.Patiño, T., Feiner-Gracia, N., Arqué, X., Miguel-López, A., Jannasch, A., Stumpp, T., Schäffer, E., Albertazzi, L., Sánchez, S., J. Am. Chem. Soc. 140, 7896 (2018).
24.Quincke, G.H., IEEE Trans. Ind. Appl. 4, 845 (1984), doi:10.1109/TIA.1984.4504495.
25.Bricard, A., Caussin, J.-B., Desreumaux, N., Dauchot, O., Bartolo, D., Nature 503, 95 (2013).
26.Ban, T., Kobayashi, Y., Suzuki, R., Nagatsu, Y., J. Phys. Soc. Jpn. 86, 101005 (2017).
27.Thutupalli, S., Seemann, R., Herminghaus, S., New J. Phys. 13, 073021 (2011).
28.Krüger, C., Klös, G., Bahr, C., Maass, C.C., Phys. Rev. Lett. 117 (2016).
29.Lushi, E., Wioland, H., Goldstein, R.E., Proc. Natl. Acad. Sci. U.S.A. 111, 9733 (2014).
30.Wu, Y., Jiang, Y., Kaiser, A.D., Alber, M., Phys. Biol. 8, 055003 (2011).
31.Onsager, L., Ann. N.Y. Acad. Sci. 51, 627 (1949).
32.Baskaran, A., Marchetti, M.C., Phys. Rev. Lett. 101 (2008).
33.Farhadi, L., Fermino Do Rosario, C., Debold, E.P., Baskaran, A., Ross, J.L., Front. Phys. 6 (2018).
34.Huber, L., Suzuki, R., Krüger, T., Frey, E., Bausch, A.R., Science 361, 255 (2018).
35.Schaller, V., Weber, C., Semmrich, C., Frey, E., Bausch, A.R., Nature 467, 73 (2010).
36.Liu, L., Tüzel, E., Ross, J.L., J. Phys. Condens. Matter. 23, 374104 (2011).
37.Angelani, L., Di Leonardo, R., Ruocco, G., Phys. Rev. Lett. 102 (2009), doi:10.1103/PhysRevLett.104.168104.
38.Di Leonardo, R., Angelani, L., Dell’Arciprete, D., Ruocco, G., Iebba, V., Schippa, S., Conte, M.P., Mecarini, F., De Angelis, F., Di Fabrizio, E., Proc. Natl. Acad. Sci. U.S.A. 107, 9541 (2010).
39.Galajda, P., Keymer, J., Chaikin, P., Austin, R., J. Bacteriol. 189, 8704 (2007).
40.Coombes, C.E., Yamamoto, A., Kenzie, M.R., Odde, D.J., Gardner, M.K., Curr. Biol. 23, 1342 (2013).
41.Gardner, M.K., Zanic, M., Howard, J., Curr. Opin. Cell Biol. 25, 14 (2013).
42.Schmoller, K.M., Fernández, P., Arevalo, R.C., Blair, D.L., Bausch, A.R., Nat. Commun. 1, 134 (2010).
43.Li, I.T.S., Ha, T., Chemla, Y.R., Biophys. J. 106, 786a (2014).


Autonomous materials from biomimicry

  • Jennifer L. Ross (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed