Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T07:17:39.169Z Has data issue: false hasContentIssue false

Biological Adhesion for Locomotion on Rough Surfaces: Basic Principles and A Theorist's View

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Surface roughness is the main reason why macroscopic solids usually do not adhere to each other with any measurable strength, and a root-mean-square roughness amplitude of only 1 μm is enough to completely remove the adhesion between normal rubber (with an elastic modulus E ≈ 1 MPa) and a hard, nominally flat substrate. Biological adhesion systems used by insects and geckos for locomotion are built from a relatively stiff material (keratin or chitin–protein composite with E ≈ 1 GPa). Nevertheless, strong adhesion is possible even to very rough substrate surfaces by using noncompact solid structures consisting of fibers (setae) and plates (spatulae). Biological systems use a hierarchical building principle, where the thickness of the fibers or plates decreases as one approaches the outer surface of the attachment pad, to optimize the binding to rough surfaces while simultaneously avoiding elastic instabilities, for example, lateral bundling of fibers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Persson, B.N.J. et al., J. Phys.: Condens. Matter 17, R1 (2005).Google Scholar
2.Kendall, K., Molecular Adhesion and Its Applications (Kluwer, New York, 2001).Google Scholar
3.Fuller, K.N.G., Tabor, D., Proc. R. Soc. London, Ser. A 345, 327 (1975).Google Scholar
4.Persson, B.N.J., Eur. Phys. J. E8, 385 (2002).Google Scholar
5.Persson, B.N.J., Surf. Sci. Rep. 61, 201 (2006).CrossRefGoogle Scholar
6.Samoilov, V.N., Sivebaek, I.M., Persson, B.N.J., J. Chem. Phys. 121, 9639 (2004).CrossRefGoogle Scholar
7.Shull, K.R., Creton, C., J. Polym. Sci. B42, 4023 (2004).CrossRefGoogle Scholar
8.Persson, B.N.J., Albohr, O., Creton, C., Peveri, V., J. Chem. Phys. 120, 8779 (2004).CrossRefGoogle Scholar
9.Gorb, S., Attachment Devices of Insect Cuticle (Kluwer, Dordrecht, 2001); M. Scherge, S. Gorb, Biological Micro- and Nanotribology: Nature's Solutions (Springer, Berlin, 2001).Google Scholar
10.Persson, B.N.J., J. Chem. Phys. 118, 7614 (2003).CrossRefGoogle Scholar
11.Jiao, Y., Gorb, S.N., Scherge, M., J. Exp. Biol. 203, 1887 (2000).CrossRefGoogle Scholar
12.Persson, B.N.J., Gorb, S., J. Chem. Phys. 119, 11437 (2004).CrossRefGoogle Scholar
13.Carbone, C., Persson, B.N.J., Phys. Rev. B 70, 125407 (2004).CrossRefGoogle Scholar
14.Glassmaker, N.J., Jagota, A., Hui, C.-Y., Kim, J., J. R. Soc. Interface 1, 23 (2004).CrossRefGoogle Scholar
15.Jagota, A., Bennison, S.J., Integr. Comp. Biol., 42, 1140 (2002)CrossRefGoogle Scholar
16.Haas, F., Gorb, S., Arthropod Struct. Dev. 33, 45 (2004).CrossRefGoogle Scholar
17.Federle, W., J. Exp. Biol. 209, 2611 (2006).CrossRefGoogle Scholar
18.Autumn, K. et al., Proc. Natl. Acad. Sci. USA 99, 12252 (2002).CrossRefGoogle Scholar
19.Arzt, E., Gorb, S., Spolenak, R., Proc. Natl. Acad. Sci. USA 100, 10603 (2003).CrossRefGoogle Scholar
20.Gao, H., Mech. Mater. 37, 275 (2005). In this reference, the optimal shape of an elastic solid for maximal pulloff force from a perfectly smooth substrate is discussed. However, geckos need to adhere to randomly rough surfaces and in this case there exists no unique optimal shape.CrossRefGoogle Scholar
21.Persson, B.N.J., Sliding Friction: Physical Principles and Applications (Springer, Heidelberg, 2nd ed., 2000).CrossRefGoogle Scholar
22.Persson, B.N.J., Mugele, F., J. Phys.: Condens. Matter 16, R295 (2004).Google Scholar
23.Brochard-Wyart, F., de Gennes, P.G., J. Phys.: Condens. Matter 6, A9 (1994); P. Martin, F. Brochard-Wyart, Phys. Rev. Lett. 80, 3296 (1998); P. Martin, A. Buguin, F. Brochard-Wyart, Langmuir 17, 6553 (2001).Google Scholar
24.Persson, B.N.J., Volokitin, A., Tosatti, E., Eur. Phys. J. E11, 409 (2003); C. Carbone, B.N.J. Persson, J. Chem. Phys. 121, 2246 (2004).Google Scholar
25.Israelachvili, J., Intermolecular and Surface Forces (Academic Press, London, 1992).Google Scholar
26.Huber, G. et al., Proc. Natl. Acad. Sci. USA 102, 16293 (2005).CrossRefGoogle Scholar
27.Hiller, U., Blaschke, R., Naturwissenschaften 54, 344 (1997).CrossRefGoogle Scholar
28.Hansen, W.R., Autumn, K., Proc. Natl. Acad. Sci. USA 102, 385 (2005). The argument presented in this reference for self-cleaning may work for perfectly smooth substrates and particles, but real surfaces have roughness on many different length scales, and in this case the binding of a hard particle to a hard substrate will be negligible.CrossRefGoogle Scholar
29.Spolenak, R., Gorb, S., Arzt, E., Acta Biomater. 1, 5 (2005).CrossRefGoogle Scholar
30.Gorb, S., private communication.Google Scholar
31.Tian, Y. et al., Proc. Natl. Acad. Sci. USA 103, 19320 (2006).CrossRefGoogle Scholar