Skip to main content Accessibility help
×
×
Home

Caloric effects in ferroic materials

  • Sebastian Fähler (a1) and Vitalij K. Pecharsky (a2)

Abstract

The fundamentals and applications of ferroic materials—ferromagnetic, ferroelectric, and ferroelastic—are common subjects discussed in just about every graduate course related to functional materials. Looking beyond today’s traditional uses, such as in permanent magnets, capacitors, and shape-memory alloys, there are worthwhile and interesting questions common to the caloric properties of these ferroic materials. Can ferroic materials be used in a cooling cycle? Why are these materials susceptible to external fields? Which combination of properties is required to make some of them suitable for efficient cooling and heat pumping? We address these questions in this introduction to ferroic cooling, which comprises magnetocaloric, electrocaloric, elastocaloric and barocaloric approaches and combinations thereof (i.e., multicalorics). These are addressed in greater detail in the articles in this issue.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Caloric effects in ferroic materials
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Caloric effects in ferroic materials
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Caloric effects in ferroic materials
      Available formats
      ×

Copyright

References

Hide All
1.US Energy Information Administration, Annual Energy Outlook 2017: With Projections to 2050 (2017), https://www.eia.gov/outlooks/aeo/pdf/0383(2017).pdf.
2.Shah, N., Khanna, N., Karali, N., Karali, N., Park, W.Y., Qu, Y., Zhou, N., “Opportunities for Simultaneous Efficiency Improvement and Refrigerant Transition in Air Conditioning” (Energy Analysis and Environmental Impacts Division of the Lawrence Berkeley National Laboratory, International Energy Studies Group, China Energy Group, Report LBNL-2001021, 2017), https://escholarship.org/uc/item/2r19r76z.
3.Kitanowski, A., Tušek, J., Tomc, U., Plaznik, U., Ožbolt, M., Poredoš, A., Magnetocaloric Energy Conversion: From Theory to Applications (Springer, Cham, Switzerland, 2015).
4.Schmidt, H., J. Phys. Condens. Matter 20, 434201 (2008).
5.Fähler, S., Rößler, U.K., Kastner, O., Eckert, J., Eggeler, G., Emmerich, H., Entel, P., Müller, S., Quandt, E., Albe, K., Adv. Eng. Mater. 14, 10 (2012).
6.Gschneidner, K.A. Jr., Pecharsky, V.K., Annu. Rev. Mater. Sci. 30, 387 (2000).
7.Brück, E., J. Phys. D Appl. Phys. 38, R381 (2005).
8.Tishin, A.M., Spichkin, Y.I., The Magnetocaloric Effect and Its Applications (IOP Publishing, Bristol, UK, 2003).
9.Krenke, T., Duman, E., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A., Nat. Mater. 4, 450 (2005).
10.Mañosa, L., González-Alonso, D., Planes, A., Barrio, M., Tamarit, J.-L., Titov, I.S., Acet, M., Bhattacharyya, A., Majumdar, S., Nat. Commun. 2, 595 (2011).
11.Marathe, M., Renggli, D., Sanlialp, M., Kararabasov, M.O., Shvatsman, V.V., Lupascu, D.C., Grunebohm, A., Ederer, C., Phys. Rev. B 98, 014102 (2017).
12.Entel, P., Fähler, S., Eds., Phys. Status Solidi B 255 (2), (2018).
13.Planes, A., Castan, T., Saxena, A., Philos. Mag. 94, 1893 (2013).
14.Stern-Taulats, E., Castán, T., Mañosa, L., Planes, A., Mathur, N.D., Moya, X., MRS Bull. 43 (4), 295 (2018).
15.Waske, A., Gruner, M.E., Gottschall, T., Gutfleisch, O., MRS Bull. 43 (4), 269 (2018).
16.Weiss, P., Piccard, A., J. Phys. 7, 103 (1917).
17.Brown, G.V., J. Appl. Phys. 47, 3673 (1976).
18.Moya, X., Defay, E., Mathur, N.D., Hirose, S., MRS Bull. 43 (4), 291 (2018).
19.Kobeko, P., Kurtschatov, J., Z. Phys. 66, 192 (1930).
20.Frenzel, J., Eggeler, G., Quandt, E., Seelecke, S., Kohl, M., MRS Bull. 43 (4), 280 (2018).
21.Hou, H., Cui, J., Qian, S., Catalini, D., Hwang, Y., Radermacher, R., Takeuchi, I., MRS Bull. 43 (4), 285 (2018).
22.Gough, J., Mem. Lit. Philos. Soc. Manchester 1 (2nd Series), 288 (1805).
23.Mañosa, L., González-Alonso, D., Planes, A., Bonnot, E., Barrio, M., Tamarit, J.L., Aksoy, S., Acet, M., Nat. Mater. 9, 478 (2010).
24.Moya, X., Kar-Narayan, S., Mathur, N.D., Nat. Mater. 13, 439 (2014).
25.Zimm, C., Boeder, A., Mueller, B., Rule, K., Russek, S.L., MRS Bull. 43 (4), 274 (2018).
26.Tesla, N., “Pyromagneto Electric Generator,” US Patent 0428057 A1 I (1890).
27.Edison, T.A., “Pyromagnetic Generator,” US Patent 476983 A (1892).
28.Srivastava, V., Song, Y., Bhatti, K., James, R.D., Adv. Energy Mater. 1 (1), 97 (2011).
29.Christiaanse, T., Brück, E., Metall. Mater. Trans. E 1 (1), 36 (2014).
30.Gueltig, M., Wendler, F., Ossmer, H., Ohtsuka, M., Miki, H., Takagi, T., Kohl, M., Adv. Energy Mater. 7, 1601879 (2017).
32.Barati, M.R., Selomulya, C., Sandeman, K.G., Suzuki, K., Appl. Phys. Lett. 105, 162412 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed