Skip to main content

Computational Alchemy: The Search for New Superhard Materials

  • David M. Teter

A central challenge to modern materials science is the rational design and synthesis of new materials possessing exceptional properties. Recent advances in first-principles modeling methods and the availability of increasingly powerful computational resources make this goal increasingly achievable. The strength of these modeling methods lies in their predictive ability. They are able to reproduce the crystal structures and elastic properties of a large class of materials to within 2–3% of experimental values and have predicted a number of phase transitions that have been verified experimentally.

Despite the power of these methods, the process of designing materials from first principles is not usually a straight-forward or simple one. It requires overcoming a number of obstacles, some of them quite formidable. First a calculable figure of merit that correlates well with the desired property must be identified. While this may be straightforward in some cases, in others—such as predicting the ability of a material to isolate radionuclides over million-year time scales—the process of reducing complex properties to a few calculable variables can be rather difficult. Next a promising chemical system and a realistic set of crystal structures must be selected. This is not trivial because predicting the structures that can crystallize in a given system can be exceedingly challenging. However a wide variety of methods are available to aid in the generation of promising structures — comparative crystallography, algorithms based upon the concepts of crystalline nets and close packing, modern alloy theory methods, and simulated annealing strategies being some examples.

Hide All
1.Cohen, M.L., Science 234 (1986) p. 549.
2.Cohen, M.L., Nature 338 (1989) p. 291.
3.Catlow, C.R.A. and Price, G.D., Nature 347 (1990) p. 243.
4.Cohen, M.L., Philos. Trans. R. Soc. London, Ser. A 334 (1991) p. 501.
5.Cohen, M.L., Science 261 (1993) p. 308.
6.Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., and Joannopoulos, J.D., Rev. Mod. Phys. 64 (1992) p. 1045.
7.Kingma, K.J., Cohen, R.E., Hemley, R.J., and Mao, H.K., Nature 374 (1995) p. 243.
8.Hazen, R.M. and Finger, L.W., Comparative Crystallography (John Wiley & Sons, Chichester, 1982).
9.Wells, A.F., Structural Inorganic Chemistry, 5th ed. (Clarendon Press, Oxford, 1984).
10.Hyde, B.G. and Andersson, S., Inorganic Crystal Structures (John Wiley & Sons, New York, 1989). Faria, J. Lima, Structural Mineralogy: An Introduction (Kluwer, Boston, 1994).
12.Pettifor, D.G., J. Phase Equilibrium 17 (1996) p. 384.
13.Hohan, A.F. and Ceder, G., Comp. Mater. Sci. 8 (1997) p 142.
14.Deem, M.W. and Newsam, J.M., J. Am. Chem. Soc. 114 (1992) p. 7189.
15.Boisen, M.B., Gibbs, G.V., and Bukowinski, M.S.T., Phys. Chem. Min. 21 (1994) p. 269.
16.Bundy, F.P., Sci. Am. 231 (1974) p. 62.
17.Status and Application of Diamond and Diamond-Like Materials: An Emerging Technology, MDA 903-89-K-0078 (National Research Council, Washington, 1990).
18.DeVries, R.C., in Diamond and Diamond-Like Films and Coatings, edited by Clausing, R.E., Horton, L.L., Angus, J.C., and Roidl, P., NATO ASI Series B, vol. 266 (Plenum Press, New York, 1991) p. 151.
19.Riedel, R., Adv. Mater. 4 (1992) p. 759.
20.Schnick, W.Agnew. Int. Ed. Engl. 32 (1993) p. 1580.
21.Riedel, R., Adv. Mater. 6 (1994) p. 549.
22.Lieber, C.M. and Zhang, Z.J., Adv. Mater. 6 (1994) p. 497.
23.Fang, P.H., J. Mater. Sci. Lett. 14 (1995) p. 536.
24.Lieber, C.M. and Zhang, Z.J., Chem. Ind. 22 (1995) p. 922.
25.DeVries, R.C., Diamond Rel. Mater. 4 (1995) p. 1093.
26.Subrayan, R.P. and Rasmussen, P.G., Trends Polym. Sci. 3 (1995) p. 165.
27.Li, D., Cutiongco, E., Chung, Y.W., Wong, M.S., and Sproul, W.D., Diamond Films Tech. 5 (1995) p. 261.
28.Marton, D., Boyd, K.J., and Rabalais, J.W., Int. J. Mod. Phys. 9 (1995) p. 3527.
29.Liu, A.Y., in Quantum Theory of Real Materials, edited by Chelikowsky, J.R. and Louie, S.G. (Kluwer, Boston, 1996).
30.Badding, J.V., Adv. Mater. 9 (1997) p. 877.
31.Sung, C.M. and Sung, M., Mat. Chem. Phys. 43 (1996) p. 1.
32.Plendl, J.N., Mittra, S.S., and Gielisse, P.J., Phys. Status Solidi 12 (1965) p. 367.
33.Beckmann, G., Kristall. Technik 6 (1971) p. 109.
34.Goble, R.J. and Scott, S.D., Can. Min. 23 (1985) p. 273.
35.Yang, W., Parr, R.G., and Uytterhoeven, L., Phys. Chem. Min. 15 (1987) p. 191.
36.Cohen, M.L., J. Hard Mater. 2 (1991) p. 13.
37.Leger, J.M., Haines, J., Schmidt, M., Petitet, J.P., Pereira, A.S., and Dajornada, J.A.H., Nature 3S3 (1996) p. 401.
38.Liu, A.Y. and Cohen, M.L., Science 245 (1989) p. 841.
39.Cohen, M.L., Phys. Rev. B 32 (1985) p. 7988.
40.Liu, A.Y. and Cohen, M.L., Phys. Rev. 41 (1990) p. 10727.
41.Liu, A.Y. and Wentzcovitch, R.M., Phys. Rev. 50 (1994) p. 10362.
42.Yao, H. and Ching, W.Y., Phys. Rev. 50 (1994 p. 11231.
43.Ortega, J. and Sankey, O.F., Phys. Rev. 51 (1995) p. 2624.
44.Reyes-Serrato, A., Galvän, D.H., and Garzön, I.L., Phys. Rev. 52 (1995) p. 6293.
45.Teter, D.M. and Hemley, R.J., Science 271 (1996) p. 53.
46.Han, S. and Ihm, J., Phys. Rev. B 55 (1997) p. 15349.
47.O'Neill, H., The Hardness of Metals and Its Measurement (Chapman & Hall, London, 1934).
48.Tabor, D., The Hardness of Metals (Clarendon Press, Oxford, 1951).
49.Small, L., Hardness: Theory and Practice (Service Diamond Tool Co., Ferndale, MI, 1966).
50.Tabor, D., Rev. Phys. Tech. 1 (1970) p. 145.
51.Ivan'ko, A.A., Handbook of Hardness Data (translated from Russian) (Keter, Jerusalem, 1971).
52.Tabor, D., in Microindentation Techniques in Materials Science and Engineering, ASTM STP 889, edited by Blau, P.J. and Lawn, B.R. (American Society for Testing and Materials, Philadelphia, 1986) p. 129.
53.Szymanski, A. and Szymanski, J.M., Hardness Estimation of Minerals, Rocksand Ceramic Materials (Elsevier, Amsterdam, 1989).
54.McColm, I.J., Ceramic Hardness (Plenum Press, New York, 1990).
55.Tabor, D., Philos. Mag. A74 (1996) p. 1207.
56.Plendl, J.N. and Gielisse, P.J., Phys. Rev. 125 (1961) p. 828.
57.Grimvall, G. and Thiessen, M., in Inst. Phys. Conf. Ser. No. 75 (Adam Hilger Ltd., Boston, 1986) p. 61.
58.Julg, A., Phys. Chem. Min. 3 (1987) p. 45.
59.Kisly, P.S., in Inst. Phys. Conf. Ser. No. 75 (Adam Hilger Ltd., Boston, 1986) p. 107.
60.Oilman, J.J., Science 261 (1993) p. 1436.
61.Oilman, J.J., Mater. Sci. Eng. A 209 (1996) p. 74.
62.Mehl, M.J., Klein, B.M., and Papaconstantopoulos, D.A., in Intcrmetallic Compounds, Principles and Practice, edited by Westbrook, J.H. and Fleischer, R.L., vol. I (John Wiley & Sons, London, 1994).
63.Gilman, J.J., J. Appl. Phys. 39 (1968) p. 6086.
64.Gerk, A.P., J. Mater. Sci. 12 (1977) p. 735.
65.Teter, D.M. and Ashcroft, N.W. (unpublished manuscript).
66.DeVries, R.C., Synthesis and Properties of Diamond and Cubic Boron Nitride, Report No. 81CRD110 (General Electric, Schenectady, 1981).
67.Gilman, J.J., in Mechanical Behavior of Diamond and Other Forms of Carbon, edited by Drory, M.D., Bogy, D.B., Donley, M.S., and Field, J.E. (Materials Research Society, Pittsburgh, 1995)p. 281.
68.Grimsditch, M. and Ramdas, A., Phys. Rev. B 11 (1975) p. 3139.
69.Harrison, W.A., in Electronic Structure and the Properties of Solids (Freeman, W.H., San Francisco, 1980) p. 185.
70.Hall, T.H., Science 148 (1965) p. 1331.
71.Hall, T.H. and Compton, L.A., Inorg. Chem. 4 (1965) p. 1213.
72.Zhogolev, D.A., Bugaets, O.P., and Marushko, I.A., Zh. Struk. Khim. 22 (1981) p. 46; Inorg. Chem. 22 (1981) p. 33.
73.Niemyski, T., Appenheimer, S., Panczyk, J., and Badzian, A., J. Cryst. Growth 5 (1969) p. 401.
74. Jpn. Kokai Tokkyo Koho, Japanese Patent No. 85-21812 (1985).
75.Endo, T., Sato, T., and Shimada, M., J Mater. Sci. Lett. 11 (1987) p. 683.
76.Liu, X.Y., Zhao, X.D., and Su, W.H., in High Pressure Science and Technology: AIRAPT-1993 (American Institute of Physics, 1993) p. 1279.
77.Grumbach, M.P., Sankey, O.F., and McMillan, P.F., Phys. Rev. B 52 (1995) p. 15807.
78.Stevens, A.J., Koga, T., Agee, C.B., Aziz, M.J., and Lieber, C.M., J. Am. Chem. Soc. 118 (1996) p. 10900.
79.Corkill, J.L. and Cohen, M.L., Phys. Rev. B 48 (1993) p. 17622.
80.Guo, Y. and Goddard, W.A., Chem. Phys. Lett. 237 (1995) p. 72.
81.Hughbanks, T. and Tian, Y., Solid State Commun. 96 (1995) p. 321.
82.Teter, D.M. and Hemley, R.J. (unpublished manuscript).
83.Julian, M.M. and Gibbs, G.V., J. Phys. Chem. 92 (1988) p. 1444.
84.Badding, J.V. and Nesting, D.C, Chem. Mater. 8 (1996) p. 535.
85.Tossell, J.A., J. Mag. Res. 127 (1997) p. 49.
86.Kawaguchi, M., Adv. Mater. 9 (1997) p. 615.
87.Butylenko, A.K., Samsonov, G.V., Timofeeva, L.I., and Makarenko, G.N., Pis'ma Zh. Tekh. Fiz. 3 (1977) p. 186.
88.Sirota, N.N. and Zhuk, M.M., Vestsi Akad. Navuk BSSR, Ser. Fiz.-Mat. Navuk 3 (1979) p. 122.
89.Sumya, H., Japanese Patent No. 89-208,371 (1989).
90.Wedlake, R.J. and Penny, A.L., Synthesis of a Hard Material, Ger. Offen. No. 2,806,070; 8/17/78; filed 2/16/77.
91.Badzian, A.J., Mater. Res. Bull. 16 (1981) p. 1385.
92.Nakano, S., Akaishi, M., Sasaki, T., and Yamaoka, S., Chem. Mater. 6 (1994) p. 2246.
93.Knittle, E., Kaner, R.B., Jeanloz, R., and Cohen, M.L., Phys. Rev. B 51 (1995) p. 12149.
94.Bando, Y., Nakano, S., and Kurashima, K., J. Electron. Microsc. 45 (1996) p. 135.
95.Komatsu, T., Nimura, M., Kakudate, Y., and Fujiwara, S., J. Mater. Res. 6 (1996) p. 1799.
96.Sasaki, T., Akaishi, M., Yamaoka, S., Fujiki, Y., and Oikawa, T., Chem. Mater. 5 (1993) p. 695.
97.Nakano, S., Akaishi, M., Sasaki, T., and Yamaoka, S., Mater. Sci. Eng. A 209 (1996) p. 29.
98.Badzian, A., Syntezy Wysokocisnieniowe Krysztalozv O Strukturze Type Dlamentu I Ich Structura Atomowa W Swietle Badan Rentgenowskich (ITME, Warsaw, 1984).
99.Kakudate, Y., Yoshida, M., Usuba, S., Yokoi, H., Fujiwara, S., Kawaguchi, M., Sako, K., and Sawai, T., in Proc. 3rd IUMRS Int. Conf. Adv. Mater. (International Union of Materials Research Societies, Tokyo, 1993).
100.Komatsu, T., Kakudate, Y., and Fujiwara, S., J. Chem. Soc., Trans. Faraday Soc. 92 (1996) p. 5067.
101.Lambrecht, W.R.L. and Segall, B., Phys. Rev. B 47 (1993) p. 9289.
102.Tateyama, Y., Ogitsu, T., Kusakabe, K., Tsuneyuki, S., and Itoh, S., J. Chem. Soc., Trans. Faraday Soc. 55 (1997) p. 10161.
103.Teter, D.M. and Ozolins, V. (unpublished manuscript).
104.Helmersson, U., Todorova, S., Barnett, S.A., Sundgren, J.E., Market, L.C, and Greene, J.E., J. Appl. Phys. 62 (1987) p. 481.
105.Chu, X. and Barnett, S.A., J. Appl. Phys. 77 (1995) p. 4403.
106.Sproul, W.D., Science 273 (1996) p. 889.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed