Skip to main content
    • Aa
    • Aa

Cracklike Processes within Frictional Motion: Is Slow Frictional Sliding Really a Slow Process?


The dynamics of frictional motion have been studied for hundreds of years, yet many aspects of these important processes are not understood. First described by Coulomb and Amontons as the transition from static to dynamic friction, the onset of frictional motion is central to fields as diverse as physics, tribology, mechanics of earthquakes, and fracture. We review recent studies in which fast (real-time) visualization of the true contact area along a rough spatially extended interface separating two blocks of like material has revealed the detailed dynamics of how this transition takes place. The onset of motion is preceded by a discrete sequence of rapid cracklike precursors, which are initiated at shear levels that are well below the threshold for static friction. These precursors systematically increase in spatial extent with the applied shear force and leave in their wake a significant redistribution of the true contact area. Their cumulative effect is such that, just prior to overall sliding of the blocks, a highly inhomogeneous contact profile is established along the interface. At the transition to overall motion, these precursor cracks trigger both slow propagation modes and modes that travel faster than the shear wave speed. Overall frictional motion takes place only when either the slow propagation modes or additional shear cracks excited by these slow modes traverse the entire interface. Surprisingly, in the resulting stick–slip motion, the surface contact profile retains the profile built up prior to the first slipping event. These results suggest a fracture-based mechanism for stick–slip motion that is qualitatively different from other descriptions.

Hide All
1.Carpick R.W., Ogletree D.F., Salmeron M., J. Colloid Interface Sci. 211, 395 (1999).
2.Dieterich J.H., Tectonophysics 211, 115 (1992).
3.Lapusta N., Rice J.R., J. Geophys. Res. [Solid Earth] 108, 2205 (2003).
4.Ben-Zion Y., J. Mech. Phys. Solids 49, 2209 (2001).
5.Ohnaka M., Earth Planets Space 56, 773 (2004).
6.Scholz C.H., Nature 391, 37 (1998).
7.Thompson B.D., Young R.P., Lockner D.A., Geophys. Res. Lett. 32, L10304 (2005).
8.Luan B.Q., Robbins M.O., Nature 435, 929 (2005).
9.Gerde E., Marder M., Nature 413, 285 (2001).
10.Urbakh M., Klafter J., Gourdon D., Israelachvili J., Nature 430, 525 (2004).
11.Persson B.N.J., Sliding Friction Physical Principles and Applications (Springer-Verlag, New York, ed. 2, 2000).
12.Rice J.R., Ruina A.L., J. Appl. Mech. 50, 343 (1983).
13.Ruina A., J. Geophys. Res. 88, 359 (1983).
14.Dieterich J., J. Geophys. Res. 84, 2161 (1979).
15.Marone C., Annu. Rev. Earth Planet. Sci. 26, 643 (1998).
16.Kilgore B.D., Blanpied M.L., Dieterich J.H., Geophys. Res. Lett. 20, 903 (1993).
17.Baumberger T., Berthoud P., Caroli C., Phys. Rev. B 60, 3928 (1999).
18.Caroli C., Baumberger T., Bureau L., J. Phys. IV 12, 269 (2002).
19.Bowden F.P., Tabor D., The Friction and Lubrication of Solids (Oxford University Press, New York, ed. 2, 2001).
20.Dieterich J.H., Kilgore B.D., Pure Appl. Geophys. 143, 283 (1994).
21.Ovcharenko A., Halperin G., Etsion I., Wear 264, 1043 (2008).
22.Bureau L., Baumberger T., Caroli C., Eur. Phys. J. E 19, 163 (2006).
23.Rubinstein S., Cohen G., Fineberg J., Phys. Rev. Lett. 96, 256103 (2006).
24.Freund L.B., Dynamic Fracture Mechanics (Cambridge University Press, New York, 1990).
25.Fineberg J., Marder M., Phys. Rep. 313, 2 (1999).
26.Rosakis A.J., Samudrala O., Singh R.P., Shukla A., J. Mech. Phys. Solids 46, 1789 (1998).
27.Rosakis A.J., Samudrala O., Coker D., Science 284, 1337 (1999).
28.Gao H.J., Huang Y.G., Abraham F.F., J. Mech. Phys. Solids 49, 2113 (2001).
29.Needleman A., J. Appl. Mech.: Trans. ASME 66, 847 (1999).
30.Rubinstein S.M., Cohen G., Fineberg J., Nature 430, 1005 (2004).
31.Rubinstein S.M., Shay M., Cohen G., Fineberg J., Int. J. Fract. 140, 201 (2006).
32.Rubinstein S.M., Cohen G., Fineberg J., Phys. Rev. Lett. 98, 226103 (2007).
33.Freund L.B., J. Geophys. Res. 84, 2199 (1979).
34.Rosakis A.J., Samudrala O., Coker D., Mater. Res. Innov. 3, 236 (2000).
35.Xia K.W., Rosakis A.J., Kanamori H., Science 303, 1859 (2004).
36.Reches Z., Lockner D.A., J. Geophys. Res. [Solid Earth] 99, 18159 (1994).
37.Falk M.L., Langer J.S., Phys. Rev. E 57, 7192 (1998).
38.Rottler J., Robbins M.O., Phys. Rev. Lett. 95 (2005).
39.Lapusta N., Rice J.R., Ben-Zion Y., Zheng G.T., J. Geophys. Res. [Solid Earth] 105, 23765 (2000).
40.Ohnaka M., Pure Appl. Geophys. 161, 1915 (2004).
41.Kanamori H., Stewart G.S., J. Geophys. Res. 83, 3427 (1978).
42.Das S., Pure Appl. Geophys. 160, 579 (2003).
43.Ohnaka M., Shen L.F., J. Geophys. Res. [Solid Earth] 104, 817 (1999).
44.Ma S.L., He C.R., Tectonophysics 337, 135 (2001).
45.Brace W.F., Byerlee J.D., Science 153, 990 (1966).
46.Bouchon M., Bouin M.P., Karabulut H., Toksöz M.N., Dietrich M., Rosakis A., Geophys. Res. Lett. 28, 2723 (2001).
47.Aagaard B.T., Heaton T.H., Bull. Seismol. Soc. Am. 94, 2064 (2004).
48.Dunham E.M., J. Geophys. Res. [Solid Earth] 112 (2007).
49.Liu Y., Lapusta N., J. Mech. Phys. Solids 56, 25 (2008).
50.Beroza G.C., Jordan T.H., J. Geophys. Res. [Solid Earth Planets] 95, 2485 (1990).
51.Abercrombie R.E., Ekstrom G., J. Geophys. Res. [Solid Earth] 108 (2003).
52.Brudzinski M.R., Allen R.M., Geology 35, 907 (2007).
53.Ellsworth W.L., Beroza G.C., Geophys. Res. Lett. 25, 401 (1998).
54.Ihmle P.F., Jordan T.H., Science 266, 1547 (1994).
55.Kanamori H., Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 80, 297 (2004).
56.Melbourne T.I., Webb F.H., Science 300, 1886 (2003).
57.Miller M.M., Melbourne T., Johnson D.J., Sumner W.Q., Science 295, 2423 (2002).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 13 *
Loading metrics...

Abstract views

Total abstract views: 74 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd October 2017. This data will be updated every 24 hours.