Skip to main content Accessibility help
×
Home

Cryogenic electron microscopy for quantum science

  • Andrew M. Minor (a1), Peter Denes (a2) and David A. Muller (a3)

Abstract

Electron microscopy is uniquely suited for atomic-resolution imaging of heterogeneous and complex materials, where composition, physical, and electronic structure need to be analyzed simultaneously. Historically, the technique has demonstrated optimal performance at room temperature, since practical aspects such as vibration, drift, and contamination limit exploration at extreme temperature regimes. Conversely, quantum materials that exhibit exotic physical properties directly tied to the quantum mechanical nature of electrons are best studied (and often only exist) at extremely low temperatures. As a result, emergent phenomena, such as superconductivity, are typically studied using scanning probe-based techniques that can provide exquisite structural and electronic characterization, but are necessarily limited to surfaces. In this article, we focus not on the various methods that have been used to examine quantum materials at extremely low temperatures, but on what could be accomplished in the field of quantum materials if the power of electron microscopy to provide structural analysis at the atomic scale was extended to extremely low temperatures.

Copyright

References

Hide All
1.Ball, P., MRS Bull . 42, 698 (2017).
2.Assig, M., Etzkorn, M., Enders, A., Stiepany, W., Ast, C.R., Kern, K., Rev. Sci. Instrum. 84, 033903 (2013).
3.Rosenthal, E.P., Andrade, E.F., Arguello, C.J., Fernandes, R.M., Xing, L.Y., Wang, X.C., Jin, C.Q., Millis, A.J., Pasupathy, A.N., Nat. Phys. 10, 225 (2014).
4.Zhao, L., Deng, H., Korzhovska, I., Begliarbekov, M., Chen, Z., Andrade, E., Rosenthal, E., Pasupathy, A., Oganesyan, V., Krusin-Elbaum, L., Nat. Commun. 6, 8279 (2015).
5.Pan, S.H., O’Neal, J.P., Badzey, R.L., Chamon, C., Ding, H., Engelbrecht, J.R., Wang, Z., Eisaki, H., Uchida, S., Gupta, A.K., Ng, K.W., Hudson, E.W., Lang, K.M., Davis, J.C., Nature 413, 282 (2001).
6.Pan, S.H., O’Neal, J.P., Badzey, R.L., Chamon, C., Ding, H., Engelbrecht, J.R., Wang, Z., Eisaki, H., Uchida, S., Gupta, A.K., Ng, K.W., Hudson, E.W., Lang, K.M., Davis, J.C., Science 340, 1434 (2013).
7.Zhang, Y., Brar, V.W., Girit, C., Zettl, A., Crommie, M.F., Nat. Phys. 5, 722 (2009).
8.Zheng, H., Xu, S.-Y., Bian, G., Guo, C., Chang, G., Sanchez, D.S., Belopolski, I., Lee, C.-C., Huang, S.-M., Zhang, X., Sankar, R., Alidoust, N., Chang, T.-R., Wu, F., Neupert, T., Chou, F., Jeng, H.-T., Yao, N., Bansil, A., Jia, S., Lin, H., Hasan, M.Z., ACS Nano 10, 1378 (2016).
9.Fujita, K., Schmidt, A.R., Kim, E.-A., Lawler, M.J., Hai Lee, D., Davis, J.C., Eisaki, H., Uchida, S.-i., J. Phys. Soc. Jpn. 81, 011005 (2011).
10.Watanabe, H., Ishikawa, I., Jpn. J. Appl. Phys. 6, 83 (1967).
11.Heide, H.G., Urban, K., J. Phys. E Sci. Instrum. 5, 803 (1972).
12.Matricardi, V.R., Lehmann, W.G., Kitamura, N., Silcox, J., J. Appl. Phys. 38, 1297 (1967).
13.Venables, J.A., Ball, D.J., Thomas, G.J., J. Phys. E Sci. Instrum. 1, 121 (1968).
14.Valdrè, U., Goringe, M.J., J. Sci. Instrum. 42, 268 (1965).
15.Fujiyoshi, Y., Mizusaki, T., Morikawa, K., Yamagishi, H., Aoki, Y., Kihara, H., Harada, Y., Ultramicroscopy 38, 241 (1991).
16.Harada, K., Matsuda, T., Bonevich, J., Igarashi, M., Kondo, S., Pozzi, G., Kawabe, U., Tonomura, A., Nature 360, 51 (1992).
17.Mori, S., Chen, C.H., Cheong, S.W., Nature 392, 473 (1998).
18.Rajeswari, J., Huang, P., Mancini, G.F., Murooka, Y., Latychevskaia, T., McGrouther, D., Cantoni, M., Baldini, E., White, J.S., Magrez, A., Giamarchi, T., Rønnow, H.M., Carbone, F., Proc. Natl. Acad. Sci. U.S.A. 112, 14212 (2015).
19.Zhao, W., Li, M., Chang, C.-Z., Jiang, J., Wu, L., Liu, C., Moodera, J.S., Zhu, Y., Chan, M.H.W., Sci. Adv. 4, eaao2682 (2018).
20.Savitzky, B.H., El Baggari, I., Clement, C.B., Waite, E., Goodge, B.H., Baek, D.J., Sheckelton, J.P., Pasco, C., Nair, H., Schreiber, N.J., Hoffman, J., Admasu, A.S., Kim, J., Cheong, S.-W., Bhattacharya, A., Schlom, D.G., McQueen, T.M., Hovden, R., Kourkoutis, L.F., Ultramicroscopy 191, 56 (2018).
21.El Baggari, I., Savitzky, B.H., Admasu, A.S., Kim, J., Cheong, S.-W., Hovden, R., Kourkoutis, L.F., Proc. Natl. Acad. Sci. U.S.A. 115, 1445 (2018).
22.Goodge, B.H., Bianco, E., Zandbergen, H.W., Kourkoutis, L.F., Microsc. Microanal. 25, 930 (2019).
23.Dagotto, E., Science 309, 257 (2005).
25.Webb, G.W., Marsiglio, F., Hirsch, J.E., Physica C 514, 17 (2015).
26.Stewart, G.R., Adv. Phys. 66, 75 (2017).
27.Coleman, P., Schofield, A.J., Nature 433, 226 (2005).
28.Wieteska, A., Foutty, B., Guguchia, Z., Flicker, F., Mazel, B., Fu, L., Jia, S., Marianetti, C., van Wezel, J., Pasupathy, A., “Uniaxial Strain Tuning of Superconductivity in 2H- NbSe2,” submitted arXiv:1903.05253v1 (2019).
29.Ozdol, V.B., Gammer, C., Jin, X.G., Ercius, P., Ophus, C., Ciston, J., Minor, A.M., Appl. Phys. Lett. 106, 253107 (2015).
30.Ophus, C., Microsc. Microanal. 25, 563 (2019).
31.Han, Y., Nguyen, K., Cao, M., Cueva, P., Xie, S., Tate, M.W., Purohit, P., Gruner, S.M., Park, J., Muller, D.A., Nano Lett . 18, 3746 (2018).
32.Müller, K., Krause, F.F., Béché, A., Schowalter, M., Galioit, V., Löffler, S., Verbeeck, J., Zweck, J., Schattschneider, P., Rosenauer, A., Nat. Commun. 5, 5653 (2014).
33.Anderson, P.W., Science 235, 1196 (1987).
34.Phatak, C., Petford-Long, A.K., Heinonen, O., Tanase, M., De Graef, M., Phys. Rev. B 83, 174431 (2011).
35.Dusad, R., Kirschner, F.K.K., Hoke, J.C., Roberts, B.R., Eyal, A., Flicker, F., Luke, G.M., Blundell, S.J., Davis, J.C.S., Nature 571, 234 (2019).
36.Baldi, A., Narayan, T.C., Koh, A.L., Dionne, J.A., Nat. Mater. 13, 1143 (2014).
37.Bourrellier, R., Meuret, S., Tararan, A., Stéphan, O., Kociak, M., Tizei, L.H.G., Zobelli, A., Nano Lett. 16, 4317 (2016).
38.Hudak, B.M., Song, J., Sims, H., Troparevsky, M.C., Humble, T.S., Pantelides, S.T., Snijders, P.C., Lupini, A.R., ACS Nano 12, 5873 (2018).
39.Kalinin, S.V., Pennycook, S.J., MRS Bull . 42, 637 (2017).
40.Ani Nersisyan, S.P., Alidoust, N., Manenti, R., Renzas, R., Bui, C.-V., Vu, K., Whyland, T., Mohan, Y., Sete, E.A., Stanwyck, S., Bestwick, A., Reagor, M., “Manufacturing Low Dissipation Superconducting Quantum Processors,” submitted arXiv:1901.08042 (2019).
41.Barkov, F., Romanenko, A., Trenikhina, Y., Grassellino, A., J. Appl. Phys. 114, 164904 (2013).
42.Lagos, M.J., Batson, P.E., Nano Lett . 18, 4556 (2018).
43.Goode, A.E., Porter, A.E., Ryan, M.P., McComb, D.W., Nanoscale 7, 1534 (2015).
44.Jarrige, I., Bisogni, V., Zhu, Y., Leonhardt, W., Dvorak, J., Synchrotron Radiat. News 31, 7 (2018).
45.Bostedt, C., Bozek, J.D., Bucksbaum, P.H., Coffee, R.N., Hastings, J.B., Huang, Z., Lee, R.W., Schorb, S., Corlett, J.N., Denes, P., Emma, P., Falcone, R.W., Schoenlein, R.W., Doumy, G., Kanter, E.P., Kraessig, B., Southworth, S., Young, L., Fang, L., Hoener, M., Berrah, N., Roedig, C., DiMauro, L.F., J. Phys. B At. Mol. Opt. Phys. 46, 164003 (2013).

Cryogenic electron microscopy for quantum science

  • Andrew M. Minor (a1), Peter Denes (a2) and David A. Muller (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed