Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-29T01:38:04.869Z Has data issue: false hasContentIssue false

Defects in halide perovskites: The lattice as a boojum?

Published online by Cambridge University Press:  16 June 2020

Sujit Kumar
Affiliation:
Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Israel; sujit.physics09@gmail.com
Gary Hodes
Affiliation:
Department of Materials and Interfaces, Weizmann Institute of Science, Israel; gary.hodes@weizmann.ac.il
David Cahen
Affiliation:
Weizmann Institute of Science, Israel, and Bar-Ilan University, Israel; david.cahen@weizmann.ac.il
Get access

Abstract

Although halide perovskites (HaPs) are synthesized in ways that appear antithetical to those required for yielding high-quality semiconductors, the properties of the resulting materials imply, particularly for single crystals, ultralow densities of optoelectronically active defects. This article provides different views of this unusual behavior. We pose the question: Can present models of point defects in solids be used to interpret the experimental data and provide predictive power? The question arises because the measured ultralow densities refer to static defects using our present methods and models, while dynamic defect densities are ultrahigh, a result of the material being relatively soft, with a shallow electrostatic energy landscape, and with anharmonic lattice dynamics. All of these factors make the effects of dynamic defects on the materials’ optoelectronic properties minimal. We hope this article will stimulate discussions on the nontrivial question: Are HaPs, and especially the defects within them, business as usual?

Type
Halide Perovskite Opto- and Nanoelectronic Materials and Devices
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brenner, T.M., Egger, D.A., Kronik, L., Hodes, G., Cahen, D., Nat. Rev. Mater. 1 (1), 1 (2016).CrossRefGoogle Scholar
Babu, R., Giribabu, L., Singh, S.P., Cryst. Growth Des. 18 (4), 2645 (2018).CrossRefGoogle Scholar
Abdelhady, A.L., Saidaminov, M.I., Murali, B., Adinolfi, V., Voznyy, O., Katsiev, K., Alarousu, E., Comin, R., Dursun, I., Sintara, L., Sargent, E.H., Mohammed, O.F., Bakr, O.M., J. Phys. Chem. Lett. 7 (2), 295 (2016).CrossRefGoogle Scholar
Nayak, P.K., Sendner, M., Wenger, B., Wang, Z., Sharma, K., Ramadan, A.J., Lovrinčić, R., Pucci, A., Madhu, P.K., Snaith, H.J., J. Am. Chem. Soc. 140 (2), 574 (2018).CrossRefGoogle Scholar
Lany, S., Zunger, A., Phys. Rev. B 78, 235104 (2008).Google Scholar
Freysoldt, C., Grabowski, B., Hickel, T., Neugebauer, J., Rev. Mod. Phys. 86, 253 (2014).CrossRefGoogle Scholar
Qiu, L., He, S., Ono, L.K., Qi, Y., Adv. Energy Mater. 10, 1902726 (2020).CrossRefGoogle Scholar
Ran, C., Xu, J., Gao, W., Huang, C., Dou, S., Chem. Soc. Rev. 47 (12), 4581 (2018).CrossRefGoogle Scholar
Ono, L.K., Liu, S., Qi, Y., Angew. Chem. Int. Ed. Engl. 59, 6676 (2020).CrossRefGoogle Scholar
Motti, S.G., Meggiolaro, D., Martani, S., Sorrentino, R., Barker, A.J., Angelis, F.D., Petrozza, A., Adv. Mater. 31, 1901183 (2019).CrossRefGoogle Scholar
Jin, H., Debrove, E., Keshavarz, M., Scheblykin, I.G., Roeffaers, M.B.J., Hofkens, J., Steele, J.A., Mater. Horiz. 7, 397 (2020).CrossRefGoogle Scholar
Pankove, J.I., Optical Processes in Semiconductors (Prentice-Hall, Englewood Cliffs, NJ, 1971).Google Scholar
Queisser, H.J., Haller, E.E., Science 281 (5379), 945 (1998).CrossRefGoogle Scholar
Wolf, S.D., Holovsky, J., Moon, S.J., Löper, P., Niesen, B., Ledinsky, M., Haug, F.J., Yum, J.H., Ballif, C., J. Phys. Chem. Lett. 5 (6), 1035 (2014).CrossRefGoogle Scholar
Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A., Snaith, H.J., Science 342 (6156), 341 (2013).CrossRefGoogle Scholar
Yang, M., Zhou, Y., Zeng, Y., Jiang, C.S., Padture, N.P., Zhu, K., Adv. Mater. 27 (41), 6363 (2015).Google Scholar
Zhu, H., Fu, Y., Meng, F., Wu, X., Gong, Z., Ding, Q., Gustafsson, M.V., Trinh, M.T., Jin, S., Zhu, X.Y., Nat. Mater. 14 (6), 636 (2015).Google Scholar
Shi, T., Yin, W.J., Hong, F., Zhu, K., Yan, Y., Appl. Phys. Lett 106 (10), 103902 (2015).Google Scholar
Schroder, D.K., Semiconductor Material and Device Characterization (Wiley, Hoboken, NJ, 2015).Google Scholar
Saidiminov, M.I., Haque, M.A., Almutlaq, J., Sarmah, S., Miao, X.H., Begum, R., Dursun, I., Cho, N., Murali, B., Mohammed, O.F., Wu, T., Bakr, O.M., Adv. Opt. Mater. 5, 1600704 (2017).Google Scholar
He, Y., Matei, L., Jung, H.J., McCall, K.M., Chen, M., Stoumpos, C.C., Liu, Z., Peters, J.A., Chung, D.Y., Wessels, B.W., Wasielewski, M.R., Dravid, V.P., Burger, A., Kanatzidis, M.G., Nat. Commun. 9, 1609 (2018).Google Scholar
Williams, S.R., Barr, L.W., J. Phys. Colloq. 34, C9–173 (1973).Google Scholar
Ceratti, D.R., Rakita, Y., Cremonesi, L., Tenne, R., Kalchenko, V., Elbaum, M., Oron, D., Potenza, M.A.C., Hodes, G., Cahen, D., Adv. Mater. 30 (10) 1706273 (2018).CrossRefGoogle Scholar
Kim, J., Baillie, A.H., Huang, S., Solar RRL 3, 1800302 (2019).Google Scholar
Yang, J., Chen, S., Xu, J., Zhang, Q., Liu, H., Liu, Z., Yuan, M., Appl. Sci. 9, 4393 (2019).Google Scholar
Chen, B., Rudd, P.N., Yang, S., Yuan, Y., Huang, J., Chem. Soc. Rev. 48, 3842 (2019).Google Scholar
Wang, F., Bai, S., Tress, W., Hagfeldt, A., Gao, Feng, NPJ Flex. Electron. 2 (1), 1 (2018).Google Scholar
Rakita, Y., Lubomirsky, I., Cahen, D., Mater. Horiz. 6 (7), 1297 (2019).CrossRefGoogle Scholar
Ceratti, D.R., Rakita, Y., Tenne, R., Goldia, I., Cremonesi, L., Kalchenko, V., Elbaum, M., Oron, D., Potenza, M.A.C., Hodes, G., Cahen, D. (forthcoming).Google Scholar
Berry, J., Buonassisi, T., Egger, D.A., Hodes, G., Kronik, L., Loo, Y.-L., Lubomirsky, I., Marder, S.R., Mastai, Y., Miller, J.S., Mitzi, D.B., Paz, Y., Rappe, A.M., Riess, I., Rybtchinski, B., Stafsudd, O.M., Stevanovic, V., Toney, M.F., Zitoun, D., Kahn, A., Ginley, D.S., Cahen, D., Adv. Mater. 27, 5102 (2015).CrossRefGoogle Scholar
Zakutayev, A., Caskey, C.M., Fioretti, A.N., Ginley, D.S., Vidal, J., Stevanovic, V., Tea, E., Lany, S., J. Phys. Chem. Lett. 5 (7), 1117 (2014).CrossRefGoogle Scholar
Brandt, R.E., Stevanović, V., Ginley, D.S., Buonassisi, T., MRS Commun. 5 (2), 265 (2015).CrossRefGoogle Scholar
Schoonman, J., J. Solid State Chem. 5 (1), 62 (1972).Google Scholar
Cohen, A.V., Egger, D.A., Rappe, A.M., Kronik, L., J. Phys. Chem. Lett. 10 (16), 4490 (2019).CrossRefGoogle Scholar
Rakita, Y., Cohen, S.R., Kedem, N.K., Hodes, G., Cahen, D., MRS Comm. 5 (4), 623 (2015).CrossRefGoogle Scholar
Sun, S., Fang, Y., Kieslich, G., White, T.J., Cheetham, A.K., J. Mater. Chem. A 3, 18450 (2015).Google Scholar
McSkimin, H.J., Jayaraman, A., Andreatch, P. Jr., J. Appl. Phys 38 (5), 2362 (1967).Google Scholar
Ciccioli, A., Latini, A., J. Phys. Chem. Lett. 9 (13), 3756 (2018).CrossRefGoogle Scholar
Rakita, Y., Kirchartz, T., Hodes, G., Cahen, D., preprint, arXiv:1907.03971 (2019).Google Scholar
Levine, I., Vera, O.G., Kulbak, M., Ceratti, D.R., Rehermann, C., Márquez, J.A., Levcenko, S., Unold, T., Hodes, G., Balberg, I., Cahen, D., Dittrich, T., ACS Energy Lett. 4 (5), 1150 (2019).Google Scholar
Azulay, D., Levine, I., Gupta, S., Kulbak, E.B., Bera, A., San, G., Simha, S., Cahen, D., Millo, O., Hodes, G., Balberg, I., Phys. Chem. Chem. Phys. 20 (37), 24444 (2018).CrossRefGoogle Scholar
Ledinsky, M., Schönfeldová, T., Holovský, J., Aydin, E., Hájková, Z., Landová, L., Neyková, N., Fejfar, A., Wolf, S.D., J. Phys. Chem. Lett. 10 (6), 1368 (2019).CrossRefGoogle Scholar
Hoke, E.T., Slotcavage, D.J., Dohner, E.R., Bowring, A.R., Karunadasa, H.I., McGehee, M.D., Chem. Sci. 6 (1), 613 (2015).CrossRefGoogle Scholar
Sutter-Fella, C.M., Miller, D.W., Ngo, Q.P., Roe, E.T., Toma, F.M., Sharp, I.D., Lonergan, M.C., Javey, A., ACS Energy Lett. 2 (3), 709 (2017).CrossRefGoogle Scholar
McMeekin, D.P., Sadoughi, G., Rehman, W., Eperon, G.E., Saliba, M., Hörantner, M.T., Haghighirad, A., Sakai, N., Korte, L., Rech, B., Johnston, M.B., Herz, L.M., Snaith, H.J., Science 351 (6269), 151 (2016).CrossRefGoogle Scholar
Sadhanala, A., Deschler, F., Thomas, T.H., Dutton, S.E., Goedel, K.C.,Hanusch, F.C., Lai, M.L., Steiner, U., Bein, T., Docampo, P., Cahen, D., Friend, R.H., J. Phys. Chem. Lett. 5 (15), 2501 (2014).CrossRefGoogle Scholar
Jean, J., Mahony, T.S., Bozyigit, D., Sponseller, M., Holovský, J., Bawendi, M.G., Bulović, V., ACS Energy Lett. 2 (11), 2616 (2017).CrossRefGoogle Scholar
Nayak, P.K., Mahesh, S., Snaith, H.J., Cahen, D., Nat. Rev. Mater. 4 (4), 269 (2019).CrossRefGoogle Scholar
Jiang, Q., Zhao, Y., Zhang, X., Yang, X., Chen, Y., Chu, Z., Ye, Q., Li, X., Yin, Z., You, J., Nat. Photonics 13, 460 (2019).Google Scholar
Liu, Z., Krückemeier, L., Krogmeier, B., Klingebiel, B., Márquez, J.A., Levcenko, S., Öz, S., Mathur, S., Rau, U., Unold, T., Kirchartz, T., ACS Energy Lett. 4, 110 (2019).Google Scholar
Wolf, S.D., Holovsky, J., Moon, S.J., Löper, P., Niesen, B., Ledinsky, M., Haug, F.J., Yum, J.H., Ballif, C., J. Phys. Chem. Lett. 5 (6), 1035 (2014).CrossRefGoogle Scholar
Miller, D.W., Eperon, G.E., Roe, E.T., Warren, C.W., Snaith, H.J., Lonergan, M.C., Appl. Phys. Lett. 109 (15), 153902 (2016).CrossRefGoogle Scholar
Cahen, D., Noufi, R., Sol. Cells 30, 53 (1991).CrossRefGoogle Scholar
Mermin, N.D., Phys. Today 34, 46 (1981).CrossRefGoogle Scholar
Carroll, Lewis, The Hunting of the Snark: An Agony in Eight Fits (Macmillan, London, UK, 1876).□Google Scholar