Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-29T15:31:57.817Z Has data issue: false hasContentIssue false

Deposition and Applications of Quasicrystalline Coatings

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The key to engineering a material lies in exploiting its beneficial characteristics while minimizing its inherent weaknesses. Whether the weakness is, for example, poor corrosion resistance or low hardness, applying a relatively thin coating of another material that mitigates the shortcoming of the underlying material is a practical solution allowing the composite pieces to be used in demanding environments. This method has been utilized in a wide variety of cases ranging from paint on wooden fences and ceramic thermal barriers on single-crystal superalloy turbine blades to tungsten carbide hard-facing layers on drilling equipment. Some materials may suffer from high cost and therefore are used as a thin layer to impart their desired properties. For instance, gold leaf is applied to buildings for appearance while diamond films are deposited onto normal cutting tools to improve their performance. The specific application typically dictates both the material and the deposition method for the coating. The gold leaf does not need to offer much resistance to abrasion or mechanical stress in order to maintain its beautiful shine far into the future. In contrast the diamond film must be strongly adhered to the underlying cutting tool surface if it is to survive the punishing wear and thermal stresses of machining operations.

Type
Quasicrystals
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hornbogen, E. and Schandl, M., Z. Metallic. 83 (1992) p. 128.Google Scholar
2.Köster, U., Liu, W., Liebertz, H., and Michel, M., J. Non-Cryst. Solids 153/154 (1993) p. 446.CrossRefGoogle Scholar
3.Kang, S.S., Dubois, J.M., and von Stebut, J., J. Mater. Res. 8 (10) (1993) p. 2471.CrossRefGoogle Scholar
4.Chang, S-L., Chin, W.B., Zhang, C-M., Jenks, C.J., and Thiel, P.A., Surf. Sci. 337 (1995) p. 135.CrossRefGoogle Scholar
5.Sordelet, D.J., Kramer, M.J., Anderson, I.E., and Besser, M.F., in Proc. ICQ5, edited by Janot, C. and Mosseri, R. (Avignon, France, 1995) p. 778.Google Scholar
6.Dubois, J.M., Proner, A., Bucaille, B., Cathonnet, P., Dong, C., Richard, V., Pianelli, A., Massiani, Y., Yaazza, S. Ait, and Belin-Ferr, E., Ann. Chim. Phys. 19 (1994) p. 3.Google Scholar
7.Klein, T., Gozlan, A., Berger, C., Cyrot-Lackmann, F., Calvayrac, Y., and Quivy, A., Euro-phys. Lett. 13 (2) (1990) p. 129.CrossRefGoogle Scholar
8.Homes, C.C., Timusk, T., Wu, X., Altounian, Z., Sahnoune, A., and Strom-Olsen, J.O., Phys. Rev. Lett. 67 (19) (1991) p. 2694.CrossRefGoogle Scholar
9.Tu, D., Chang, S., Chao, C., and Lin, C., J. Vac. Sci. Technol. A 3 (1985) p. 2479.CrossRefGoogle Scholar
10.Neiser, R.A., PhD dissertation, State University of New York at Stony Brook, 1987.Google Scholar
11.Gayle, F.W., Shapiro, A.J., Biancaniello, F.S., and Boettinger, W.J., Metall. Trans. A 23A (1992) p. 2409.CrossRefGoogle Scholar
12.Bunshah, R., Deposition Technologies for Films and Coatings (Noyes Publications, Park Ridge, NJ, 1982).Google Scholar
13.Herman, H., MRS Bull. XIII (12) (1988) p. 60.CrossRefGoogle Scholar
14.Bernecki, T.F., Ceram. Ind. 133 (1989) p. 39.Google Scholar
15.Sordelet, D.J., Besser, M.F., and Anderson, I.E., Ceram. Ind. 5 (2) (1996) p. 161.Google Scholar
16.Kang, S.S., Dubois, J.M., and von Stebut, J., J. Mater. Res. 8 (10) (1993) p. 247.Google Scholar
17.Sordelet, D.J., Kramer, M.J., and Unal, O., J. Thermal Spray Tech. 4 (3) (1995) p. 235.CrossRefGoogle Scholar
18.Dubois, J.M. and Weinland, P., French Patent No. 2,635,117 (April 30, 1993) and U.S. Patent No. 5,204,191 (January 6, 1992).Google Scholar
19.Ind. Tech. 784 (1997) p. 17.Google Scholar
20.Sordelet, D.J. (unpublished).Google Scholar
21.Nelson, D.R. and Halperin, B.I., Science 229 (1985) p. 233.CrossRefGoogle Scholar
22.Knapp, J.A. and Follstaedt, D.M., Phys. Rev. Lett. 55 (1985) p. 1591.CrossRefGoogle Scholar
23.Follstaedt, D.M. and Knapp, J.A., Phys. Rev. Lett. 56 (1986) p. 1827.CrossRefGoogle Scholar
24.Kreider, K.G., Biancaniello, F.S., and Kaufman, M.J., Scripta Metall. 21 (1987) p. 657.CrossRefGoogle Scholar
25.Chen, L.C. and Spaepen, F., Nature 336 (1988) p. 366.CrossRefGoogle Scholar
26.Klein, T. and Symko, O.G., Appl. Phys. Lett. 64 (1994) 431.CrossRefGoogle Scholar
27.Symko, O.G., in New Horizons in Quasicrystals: Research and Applications, edited by Goldman, A.I., Sordelet, D.J., Thiel, P.A., and Dubois, J.M. (World Scientific, Singapore, 1997) p. 181.Google Scholar
28.Chien, C.L. and Lu, M., Phys. Rev. B 45 (1992) p. 12793.CrossRefGoogle Scholar
29.Yoshioka, A., Edagawa, K., Kimura, K., and Takeuchi, S., Jpn. J. Appl. Phys. 34 (1995) p. 1606.CrossRefGoogle Scholar
30.Eisenhammer, T., Mahr, A., Haugeneder, A., Assmann, W., and Reichelt, T., in Proc. ICQ5, edited by Janot, C. and Mosseri, R. (Avignon, France, 1995) p. 758.Google Scholar
31.Eisenhammer, T. and Trampert, A., Phys. Rev. Lett. 78 (1997) p. 262.CrossRefGoogle Scholar
32.Iijima, S. and Ichihashi, T., Phys. Rev. Lett. 56 (1986) p. 616.CrossRefGoogle Scholar
33.Ichikawa, N., Matsumoto, O., Hara, T., Kitahara, T., Yamauchi, T., Matsuda, T., Takeuchi, T., and Mizutani, U., Jpn. J. Appl. Phys. 33 (1994) p. L736.CrossRefGoogle Scholar