Skip to main content

Diamond Growth at Low Pressures

  • J.C. Angus, F.A. Buck, M. Sunkara, T.F. Groth, C.C. Hayman and R. Gat...

Diamond synthesis has attracted attention ever since it was established in 1797 that diamond is a crystalline form of carbon. Initially, synthesis was attempted at high pressures because diamond is the densest carbon phase. As understanding of chemical thermodynamics developed through the 19th and 20th centuries, the pressure-temperature range of diamond stability was explored. These efforts culminated in the announcement in 1955 of a process for diamond synthesis with a molten transition metal solvent-catalyst at pressures where diamond is thermo-dynamically stable. Worldwide sales of synthetic diamond now approach 330 million carats (73 tons) with a market price of between $500 million to $1 billion.

Over the past 40 years a parallel effort has been directed toward the growth of diamond at low pressures, where it is metastable. Although diamond was successfully produced, low-pressure synthesis was plagued by extremely low growth rates. Recent developments have led to much higher growth rates, creating great interest in the field. Polycrystalline diamond films can now be produced on a variety of substrates at linear growth rates of tens to hundreds of micrometers per hour. In addition, the recognition of an entirely new class of solids, the so-called “diamondlike” carbons and hydrocarbons has arisen from this work. This article will discuss both crystalline diamond grown at low pressure and the diamondlike phases.

The interest in diamond is driven by its extreme properties, summarized in Table I. Diamond stands alone as the densest (number density), strongest (elastic modulus), and hardest known material.

Hide All
1.Bundy, F.P., Hall, H.T., Strong, H.M., and Wentorf, R.H., Nature 176 (1955) p. 51.
2.Seal, M.J., personal communication.
3.DeVries, R.C., Ann. Rev. Mater. Sci. 17 (1987) p. 161.
4.Badzian, A.R. and DeVries, R.C., Mater. Res. Bull. 23 (1988) p. 385.
5.Angus, J.C. and Hayman, C.C., Science 241 (1988) p. 913.
6.Spear, K.E., J. Am. Ceram. Soc. 72 (1989) p. 171.
7.Lux, B. and Haubner, R., “Low Pressure Synthesis of Hard Coatings,” Proc. 12th Intl. Plansee-Seminar 1989; to be published in Intl. Refractory Metals and Hard Materials, Sept. 1989.
8.Angus, J.C., Proc. of Symposium on Diamond and Diamondlike Materials, 175th Meeting of the Electrochemical Society, Los Angeles, CA, May 8, 1989.
9.Field, J.E., Properties of Diamond (Academic Press, London, 1979), p. 647648.
10.Eversole, W.G., U.S. Patents 3,030,187 and 3,030,188 (1962).
11.Angus, J.C., Will, H.A., and Stanko, W.S., J. Appl. Phys. 39 (1968) p. 2915; J.C. Angus, N.C. Gardner, D.J. Poferl, S.P. Chauhan, T.J. Dyble, and P. Sung, Sin. Almazy 3 (1971) p. 38, presented at International Conference on Applications of Synthetic Diamonds in Industry, Kiev, USSR, 1971.
12.Deryagin, B.V., Ryabov, V.A., Fedoseev, D.V., Spitsyn, B.V., Lykyanovich, V.M., and Uspenskaya, K.S., Second All-Union Symposium on Processes for Nucleation and Growth of Crystals and Films of Semiconducting Compounds, Novosibirsk, USSR, May 12–16, 1969.
13.Deryagin, B.V., Spitsyn, B.V., Builov, L.L., Klochkov, A. A., Gorodetski, A.E., and Smolyaninov, A.V., Dokl. Akad. Nauk SSSR 231 (1976) p. 333; B.V. Spitsyn, L.L. Bouilov, B. V. Deryagin, J. Cryst. Growth 52 (1981) p. 219.
14.Matsumoto, S., Sato, Y., Kamo, M., and Setaka, N., Jpn. J. Appl. Phys. Part 2, 21 (1982) p. L183; S. Matsumoto, Y. Sato, M. Tsutsumi, and N. Setaka, J. Mat. Sci. 17 (1982) p. 3106; M. Kamo, Y. Sato, S. Matsumoto, and S. Setaka, J. Cryst. Growth 62 (1983) p. 642; Y. Matsui, S. Matsumoto, and N. Setaka, J. Mat. Sci. Lett. 2 (1983) p. 532.
15.Hirose, Y. and Kondo, N., Program and Abstracts, Japan Applied Physics 1988 Meeting, March 29, 1988, p. 434; Y. Hirose, Proc. of the First International Conference on the New Diamond Science and Technology, Tokyo, Japan, October 24–26, 1988.
16.Burgemeister, E.A., Ammerlaan, C.A.J., and Davies, G., J. Phys. C 13 (1980) p. L691.
17.Kitabatake, M. and Wasa, K., J. Appl. Phys. 58 (1985) p. 1693.
18.Williams, B.E. and Glass, J.T., J. Mater. Res. 4 (1989) p. 373.
19.Wagner, R.S., Acta Met. 8 (1958) p. 57; A.I. Bennett and R.L. Longini, Phys. Rev. 116 (1959) p. 53; D.R. Hamilton and R.G. Seidensticker, J. Appl. Phys. 31 (1960) p. 1165.
20.Celii, F.G., Pehrsson, P.E., Wang, H.T., and Butler, J.E., Appl. Phys. Lett. 52 (1988) p. 2043.
21.Harris, S.J., Weiner, A.M., and Perry, T.A., Appl. Phys. Lett. 53 (1988) p. 1605.
22.Frenklach, M. and Spear, K.E., J. Mater. Res. 3 (1988) p. 133; D. Huang, M. Frenklach and M. Maroncelli, J. Phys. Chem. 92 (1988) p. 6379.
23.Matsumoto, S. and Matsui, Y., J. Mat. Sci. 18 (1983) p. 1785.
24.Angus, J.C., Hoffman, R.W. and Schmidt, P.H., Proc. of the First International Conference on the New Diamond Science and Technology, Tokyo, Japan, October 24–26, 1988.
25.Vakil, H.B., Banholzer, W.F., Kehl, R.J. and Spiro, C.L., Proc. of ACS Diamond Symposium, Dallas, TX, April 1989; GE Res. and Dev. Report 89CRD064, April 1989.
26.Aisenberg, S. and Chabot, R., J. Appl. Phys. 42 (1971) p. 2953.
27.Angus, J.C., Thin Solid Films 142 (1986) p. 145.
28.Angus, J.C. and Jansen, F., J. Vac. Sci. Technol. A6 (May/June 1988) p. 1778.
29.Phillips, J.C., Phys. Rev. Lett. 42 (1979) p. 153.
30.Robertson, J. and O'Reilly, E.P., Phys. Rev. B 35 (1987) p. 2946; J. Robertson, Adv. Phys. 35 (1986) p. 317; J.L. Bredas and G.B. Street, J. Phys. C 18 (1985) p. L651.
31.Tamor, M.A., Haire, J.A., Wu, C.H., and Hass, K.C., Appl. Phys. Lett. 51 (1989) p. 123.
32.Tamor, M.A., personal communication.
33.Martin, P.J., Filipczuk, S.W., Netterfield, R.P., Field, J.S., Whitnall, D.F., and McKenzie, D.R., J. Mat. Sci. Lett. 7 (1988) p. 410.
34.Hirvonen, J., to be published.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed