Skip to main content

Flexible and stretchable sensors for fluidic elastomer actuated soft robots

  • Shuo Li (a1), Huichan Zhao (a2) and Robert F. Shepherd (a3)

Compliant robots, a class of so-called soft robots, made from elastomeric materials, require flexible or stretchable sensors for functional sophistication beyond that of open-loop controls and actuations. These robots have expanded the scope of research in robotics from fast, strong, and precise industrial manufacturing toward new needs of adaptation and safety—the realm of human–robot interactions (HRIs). HRIs include circumstances ranging from existing tasks such as vacuum cleaning to the far-reaching goal of direct contact with the heart for ventricular assist devices, and wearable robots as an intermediate task for force-augmenting exoskeletons. Toward these goals, many efforts are being made to impart sensation for feedback control via flexible or stretchable sensors that can be integrated with the soft bodies of these robots without hindering their motion or reducing their safety. This article briefly reviews the key techniques and tradeoffs for designing and fabricating these sensors. We describe the sensors that our research group uses for fluidically powered soft robots. We conclude with some perspectives about future directions of sensing integration for improved autonomy and interaction with humans in close proximity.

Hide All
1. Ilievski F., Mazzeo A.D., Shepherd R.F., Chen X., Whitesides G.M., Angew. Chem. Int. Ed. 50, 1890 (2011).
2. Lin H.-T., Leisk G.G., Trimmer B., Bioinspir. Biomim. 6, 26007 (2011).
3. Chan V., Park K., Collens M.B., Kong H., Saif T.A., Bashir R., Sci. Rep. 2, 857 (2012).
4. Anderson I.A., Gisby T.A., McKay T.G., O’Brien B.M., Calius E.P., J. Appl. Phys. 112, 041101 (2012).
5. Liang X., Boppart S.A., IEEE Trans. Biomed. Eng. 57, 953 (2010).
6. Saunders F., Golden E., White R.D., Rife J., Robotica 29, 823 (2011).
7. Polygerinos P., Wang Z., Galloway K.C., Wood R.J., Walsh C.J., Robot. Auton. Syst. 73, 135 (2015).
8. Rus D., Tolley M.T., Nature 521, 467 (2015).
9. Shepherd R.F., Ilievski F., Choi W., Morin S.A., Stokes A.A., Mazzeo A.D., Chen X., Wang M., Whitesides G.M., Proc. Natl. Acad. Sci. U.S.A. 108, 20400 (2011).
10. Martinez R.V., Branch J.L., Fish C.R., Jin L., Shepherd R.F., Nunes R.M.D., Suo Z., Whitesides G.M., Adv. Mater. 25, 205 (2013).
11. Mosadegh B., Polygerinos P., Keplinger C., Wennstedt S., Shepherd R.F., Gupta U., Shim J., Bertoldi K., Walsh C.J., Whitesides G.M., Adv. Funct. Mater. 24, 2163 (2014).
12. Wehner M., Tolley M.T., Menguc Y., Park Y.-L., Mozeika A., Ding Y., Onal C., Shepherd R.F., Whitesides G.M., Wood R.J., Soft Robot. 1, 263 (2014).
13. Tolley M.T., Shepherd R.F., Mosadegh B., Galloway K.C., Wehner M., Karpelson M., Wood R.J., Whitesides G.M., Soft Robot. 1, 213 (2014).
14. Marchese A.D., Onal C.D., Rus D., in Experimental Robotics: 13th International Symposium on Experimental Robotics, Desai J.P., Dudek G., Khatib O., Kumar V., Eds. (Springer, Heidelberg, Germany, 2013), vol. 88, pp. 4154.
15. Shepherd R.F., Stokes A.A., Freake J., Barber J., Snyder P.W., Mazzeo A.D., Cademartiri L., Morin S.A., Whitesides G.M., Angew. Chem. Int. Ed. 52, 2892 (2013).
16. Marchese A.D., Onal C.D., Rus D., Soft Robot. 1, 75 (2014).
17. Katzschmann R.K., Marchese A.D., Rus D., in Experimental Robotics: 14th International Symposium on Experimental Robotics, Hsieh M.A., Khatib O., Kumar V. Eds. (Springer, Heidelberg, Germany, 2016), vol. 109, pp. 405420.
18. Mac Murray B.C., An X., Robinson S.S., Van Meerbeek I.M., O’Brien K.W., Zhao H., Shepherd R.F., Adv. Mater. 27, 6334 (2015).
19. Argiolas A., Mac Murray B.C., Van Meerbeek I., Whitehead J., Sinibaldi E., Mazzolai B., Shepherd R.F., Soft Robot. 3, 101 (2016).
20. Van Meerbeek I.M., Mac Murray B.C., Kim J.W., Robinson S.S., Zou P.X., Silberstein M.N., Shepherd R.F., Adv. Mater. 28, 2801 (2016).
21. Bicchi A., Tonietti G., IEEE Robot. Autom. Mag. 11, 22 (2004).
22. Brown E., Rodenberg N., Amend J., Mozeika A., Steltz E., Zakin M.R., Lipson H., Jaeger H.M., Proc. Natl. Acad. Sci. U.S.A. 107, 18809 (2010).
23. Bekey G.A., Autonomous Robots: From Biological Inspiration to Implementation and Control (MIT Press, Cambridge, MA, 2005), pp. 125.
24. Lu N., Kim D.-H., Soft Robot. 1, 53 (2014).
25. Bauer S., Bauer-Gogonea S., Graz I., Kaltenbrunner M., Keplinger C., Schwödiauer R., Adv. Mater. 26, 149 (2014).
26. Park Y.L., Chen B.R., Wood R.J., IEEE Sens. J. 12, 2711 (2012).
27. Hammond F.L., Menguc Y., Wood R.J., Proc. IEEE/RSJ Int. Conf. Intelligent Robots Systems (2014) pp. 40004007.
28. Yeo J.C., Yap H.K., Xi W., Wang Z., Yeow C.-H., Lim C.T., Adv. Mater. Technol. 1, 1600018 (2016).
29. Muth J.T., Vogt D.M., Truby R.L., Menguc Y., Kolesky D.B., Wood R.J., Lewis J.A., Adv. Mater. 26, 6307 (2014).
30. Majidi C., Kramer R., Wood R.J., Smart Mater. Struct. 20, 105017 (2011).
31. Vogt D.M., Park Y.-L., Wood R.J., IEEE Sens. J. 13, 4056 (2013).
32. Menguc Y., Park Y.-L., Pei H., Vogt D., Aubin P.M., Winchell E., Fluke L., Stirling L., Wood R.J., Walsh C.J., Int. J. Robot. Res. 33, 1748 (2014).
33. Menguc Y., Park Y.-L., Martinez-Villalpando E., Aubin P., Zisook M., Stirling L., Wood R.J., Walsh C.J., Proc. IEEE Int. Conf. Robotics Automation (2013), pp. 52895296.
34. Lee C., Jug L., Meng E., Appl. Phys. Lett. 102, 183511 (2013).
35. Xu F., Zhu Y., Adv. Mater. 24, 5117 (2012).
36. Manandhar P., Calvert P.D., Buck J.R., IEEE Sens. J. 12, 2052 (2012).
37. Pan L., Chortos A., Yu G., Wang Y., Isaacson S., Allen R., Dauskardt R., Bao Z., Nat. Commun. 5, 3002 (2014).
38. Lu N., Lu C., Yang S., Rogers J., Adv. Funct. Mater. 22, 4044 (2012).
39. Lipomi D.J., Vosgueritchian M., Tee B.C-K., Hellstrom S.L., Lee J.A., Fox C.H., Bao Z., Nat. Nanotechnol. 6, 788 (2011).
40. Frutiger A., Muth J.T., Vogt D.M., Menguc Y., Campo A., Valentine A.D., Walsh C.J., Lewis J.A., Adv. Mater. 27, 2440 (2015).
41. Yao S., Zhu Y., Nanoscale 6, 2345 (2014).
42. Hu W., Niu X., Zhao R., Pei Q., Appl. Phys. Lett. 102, 83303 (2013).
43. Viry L., Levi A., Massimo M., Mondini A., Mattoli V., Mazzolai B., Beccai L., Adv. Mater. 26, 2659 (2014).
44. Roberts P., Damian D.D., Shan W., Lu T., Majidi C., Proc. IEEE Int. Conf. Robotics Automation (2013) pp. 35293534.
45. Lucarotti C., Totaro M., Sadeghi A., Mazzolai B., Beccai L., Sci. Rep. 5, 8788 (2015).
46. Puangmali P., Althoefer K., Seneviratne L.D., Murphy D., Dasgupta P., IEEE Sens. J. 8, 371 (2008).
47. Robinson S.S., O’Brien K.W., Zhao H., Peele B.N., Larson C.M., Mac Murray B.C., Van Meerbeek I.M., Dunham S.N., Shepherd R.F., Extreme Mech. Lett. 5, 47 (2015).
48. Larson C., Peele B., Li S., Robinson S., Totaro M., Beccai L., Mazzolai B., Shepherd R., Science 351, 1071 (2016).
49. Li S., Peele B.N., Larson C.M., Zhao H., Shepherd R.F., Adv. Mater. 28, 9770 (2016).
50. Ramsden E., Hall Effect Sensors, Theory and Application, 2nd ed. (Newnes, Burlington, MA, 2006), pp. 19.
51. Ozel S., Keskin N.A., Khea D., Onal C.D., Sens. Actuators A Phys. 236, 349 (2015).
52. Ozel S., Skorina E.H., Luo M., Tao W., Chen F., Pan Y., Onal C.D., “A Composite Soft Bending Actuation Module with Integrated Curvature Sensing,” presented at the 32nd IEEE International Conference on Robotics and Automation, Stockholm, Sweden, May 16–21, 2016.
53. Jentoft L., Howe R., “Compliant Fingers Make Simple Sensors Smart,” Proc. 2010 IFToMM/ASME Workshop Underactuated Grasping (UG2010) (Montreal, Canada, 2010).
54. Luo M., Pan Y., Skorina E.H., Tao W., Chen F., Ozel S., Onal C.D., Bioinspir. Biomim. 10, 55001 (2015).
55. Ryu S.C., Quek Z.F., Renaud P., Black R.J., Daniel B.L., Cutkosky M.R., Proc. IEEE Int. Conf. Robotics Automation (2012), pp. 15891594.
56. Cianchetti M., Renda F., Licofonte A., Laschi C., “Sensorization of Continuum Soft Robots for Reconstructing Their Spatial Configuration,” presented at the IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Rome, Italy, June 24–27, 2012.
57. Dobrzynski M.K., Halasz I., Pericet-Camara R., Floreano D., Proc. IEEE/RSJ Int. Conf. Intelligent Robots Systems (2012), pp. 48104815.
58. Yi J., Zhu X., Shen L., Sun B., Jiang L., in Life System Modeling and Intelligent Computing, Springer Series in Communications in Computer and Information Science, Li K., Li X., Ma S., Irwin G., Eds. (Springer, Berlin, Germany, 2010), vol. 97, pp. 2531.
59. Polygerinos P., Ataollahi A., Schaeffter T., Razavi R., Seneviratne L.D., Althoefer K., IEEE Trans. Biomed. Eng. 58, 721 (2011).
60. Jentoft L.P., Dollar A.M., Wagner C.R., Howe R.D., Sensors 14, 3861 (2014).
61. Jiang L., Low K., Costa J.M., Black R.J., Park Y.-L., Proc. IEEE/RSJ Int. Conf. Intelligent Robots Systems (2015), pp. 17631768.
62. Righini G.C., Tajani A., Cutolo A., in An Introduction to Optoelectronic Sensors, Righini G.C., Tajani A., Cutolo A., Eds. (World Scientific, Singapore, 2009), pp. 133.
63. Zhao H., Huang R., Shepherd R.F., Proc. IEEE Int. Conf. Robotics Automation (2016), pp. 40084013.
64. Zhao H., Jalving J., Huang R., Knepper R., Ruina A., Shepherd R., IEEE Robot. Autom. Mag. 23, 55 (2016).
65. Wehner M., Quinlivan B., Aubin P.M., Martinez-Villalpando E., Baumann M., Stirling L., Holt K., Wood R., Walsh C., Proc. IEEE Int. Conf. Robotics Automation (2013), pp. 33623369.
66. Asbeck A.T., Schmidt K., Walsh C.J., Robot. Auton. Syst. 73, 102 (2015).
67. Park E., Mehandru N., Lievano Beltran T., Kraus E., Holland D., Polygerinos P., Vasilyev N.V., Walsh C.J., J. Med. Device 8, 20909 (2014).
68. Zhao H., O’Brien K., Li S., Shepherd R.F., Sci. Robot. 1, eaai7529 (2016).
69. Ramuz M., Tee B.C.-K., Tok J.B.-H., Bao Z., Adv. Mater. 24, 3223 (2012).
70. To C., Hellebrekers T.L., Park Y.-L., Proc. IEEE/RSJ Int. Conf. Intelligent Robots Systems (2015), pp. 58985903.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 53
Total number of PDF views: 588 *
Loading metrics...

Abstract views

Total abstract views: 1420 *
Loading metrics...

* Views captured on Cambridge Core between 2nd February 2017 - 19th November 2017. This data will be updated every 24 hours.