Hostname: page-component-54dcc4c588-64p75 Total loading time: 0 Render date: 2025-10-03T04:53:52.522Z Has data issue: false hasContentIssue false

In situ and operando transmissionelectron microscopy of catalytic materials

Published online by Cambridge University Press:  13 January 2015

Peter A. Crozier
Affiliation:
School of Engineering of Matter, Transport and Energy, Arizona State University, USA; crozier@asu.edu
Thomas W. Hansen
Affiliation:
Center for Electron Nanoscopy, Technical University of Denmark, Denmark; twh@cen.dtu.dk
Get access

Abstract

Catalytic nanomaterials play a major role in chemical conversions and energytransformations. Understanding how materials control and regulate surfacereactions is a major objective for fundamental research on heterogeneouscatalysts. In situ environmental transmission electronmicroscopy (ETEM) is a powerful technique for revealing the atomic structures ofmaterials at elevated temperatures in the presence of reactive gases. Thisapproach can allow the structure–reactivity relations underlyingcatalyst functionality to be investigated. Thus far, ETEM has been limited bythe absence of in situ measurements of gas-phase catalyticproducts. To overcome this deficiency, operando TEM techniquesare being developed that combine atomic characterization with the simultaneousmeasurement of catalytic products. This article provides a short review of thecurrent status and major developments in the application of ETEM to gas-phasecatalysis over the past 10 years.

Information

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ertl, G., Knözinger, H., Weitkamp, J., Handbook of Heterogeneous Catalysis (VCH, Weinheim, Germany, 1997).Google Scholar
Somorjai, G.A., Li, Y., Introduction to Surface Chemistry and Catalysis 2nd ed.(Wiley-VCH, Weinheim, Germany, 2010), p. 442.Google Scholar
Hansen, T.W., Wagner, J.B., Hansen, P.L., Dahl, S., Topsoe, H., Jacobson, C.J.H., Science 294, 1508 (2001).CrossRefGoogle Scholar
Baker, R.T.K., Barber, M.A., Harris, P.S., Feates, F.S., White, R.J., J. Catal. 26, 51 (1972).CrossRefGoogle Scholar
Baker, R.T.K., Harris, P.S., Thomas, R.B., Waite, R.J., J. Catal. 30, 86 (1973).CrossRefGoogle Scholar
Sharma, R., J. Mater. Res. 20 (7), 1695 (2005).Google Scholar
Gai, P.L., Boyes, E.D., in In-Situ Microscopy in Materials Research, Gai, P.L., Ed. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997), pp. 123146.Google Scholar
Gai, P.L., Boyes, E.D., Helveg, S., Hansen, P.L., Giorgio, S., Henry, C.R., MRS Bull. 32 (12), 1044 (2007).CrossRefGoogle Scholar
Sharma, R., Crozier, P.A., in Handbook of Microscopy for Nanotechnology, Yao, N., Wang, Z.L., Eds. (Kluwer Academic Publishers, New York, 2005), pp. 531563.CrossRefGoogle Scholar
Giorgio, S., Sao Joao, S., Nitsche, S., Chaudanson, D., Sitja, G., Henry, C.R., Ultramicroscopy 106, 503 (2006).Google Scholar
Parkinson, G.M., Catal. Lett. 2, 303 (1989).CrossRefGoogle Scholar
Creemer, J.F., Helveg, S., Hoveling, G.H., Ullmann, S., Molenbroek, A.M., Sarro, P.M., Zandbergen, H.W., Ultramicroscopy 108, 993 (2008).CrossRefGoogle Scholar
Alan, T., Yokosawa, T., Gaspar, J., Pandraud, G., Paul, O., Creemer, F., Sarro, P.M., Zandbergen, H.W., Appl. Phys. Lett. 100, 4 (2012).CrossRefGoogle Scholar
Yokosawa, T., Alan, T., Pandraud, G., Dam, B., Zandbergen, H., Ultramicroscopy 112, 47 (2012).CrossRefGoogle Scholar
Vendelbo, S.B., Kooyman, P.J., Creemer, J.F., Morana, B., Mele, L., Dona, P., Nelissen, B.J., Helveg, S., Ultramicroscopy 133, 72 (2013).Google Scholar
Hansen, T.W., Wagner, J.B., Dunin-Borkowski, R.E., Mater. Sci. Technol. 26, 1338 (2010).Google Scholar
Swann, P.R., Tighe, N.J., paper presented at the 5th European Congress on Electron Microscopy., Manchester, UK, Institute of Physics, Royal Microscopical Society, 1972.Google Scholar
Doole, R.C., Parkinson, G.M., Stead, J.M., Inst. Phys. Conf. Ser. 119, 157 (1991).Google Scholar
Lee, T.C., Dewald, D.K., Eades, J.A., Robertson, I.M., Birnbaum, H.K., Rev. Sci. Instrum. 62, 1438 (1991).Google Scholar
Boyes, E.D., Gai, P.L., Ultramicroscopy 67, 219 (1997).CrossRefGoogle Scholar
Sharma, R., Weiss, K., Microsc. Res. Tech. 42, 270 (1998).Google Scholar
Hansen, P.L., Wagner, J.B., Proc. 12th Eur. Congr. Electron Microsc. (Czechoslovak Society for Electron Microscopy, Brno, Czech Republic, 2000), vol. 2, pp. 537538.Google Scholar
Jinschek, J.R., Helveg, S., Micron 43, 1156 (2012).CrossRefGoogle Scholar
Li, P., Liu, J., Nag, N., Crozier, P.A., J. Catal. 262, 73 (2009).Google Scholar
Banerjee, R., Crozier, P.A., J. Phys. Chem. C 116, 11486 (2012).CrossRefGoogle Scholar
Dehghan, R., Hansen, T.W., Wagner, J.B., Holmen, A., Rytter, E., Borg, O., Walmsley, J.C., Catal. Lett. 141, 754 (2011).Google Scholar
Xin, H.L.L., Pach, E.A., Diaz, R.E., Stach, E.A., Salmeron, M., Zheng, H.M., ACS Nano 6, 4241 (2012).CrossRefGoogle Scholar
Jeangros, Q., Faes, A., Wagner, J.B., Hansen, T.W., Aschauer, U., Van Herle, J., Hessler-Wyser, A., Dunin-Borkowski, R.E., Acta Mater. 58, 4578 (2010).Google Scholar
Haruta, M., Yamada, N., Kobayashi, T., Iijima, S., J. Catal. 115, 301 (1989).CrossRefGoogle Scholar
Giorgio, S., Cabie, M., Henry, C.R., Gold Bull. 41, 167 (2008).CrossRefGoogle Scholar
Uchiyama, T., Yoshida, H., Kuwauchi, Y., Ichikawa, S., Shimada, S., Haruta, M., Takeda, S., Angew. Chem. Int. Ed. 50, 10157 (2011).Google Scholar
Yoshida, H., Kuwauchi, Y., Jinschek, J.R., Sun, K.J., Tanaka, S., Kohyama, M., Shimada, S., Haruta, M., Takeda, S., Science 335, 317 (2012).Google Scholar
Chenna, S., Banerjee, R., Crozier, P.A., ChemCatChem 3, 1051 (2011).Google Scholar
Chenna, S., Crozier, P.A., Micron 43, 1188 (2012).CrossRefGoogle Scholar
Gorte, R.J., Vohs, J.M., in Annual Review of Chemical and Biomolecular Engineering, Prausnitz, J.M., Ed. (Annual Reviews, Palo Alto, CA, 2011), vol. 2, pp. 930.CrossRefGoogle Scholar
Yeste, M.P., Hernandez, J.C., Bernal, S., Blanco, G., Calvino, J.J., Perez-Omil, J.A., Pintado, J.M., Catal. Today 141, 409 (2009).Google Scholar
Crozier, P.A., Wang, R., Sharma, R., Ultramicroscopy 108, 1432 (2008).Google Scholar
Wang, R., Crozier, P.A., Sharma, R., J. Phys. Chem. C 113, 5700 (2009).Google Scholar
Sharma, V., Crozier, P.A., Sharma, R., Adams, J.B., Catal. Today 180, 2 (2012).CrossRefGoogle Scholar
Kudo, A., Miseki, Y., Chem. Soc. Rev. 38, 253 (2009).Google Scholar
Cavalca, F., Laursen, A.B., Kardynal, B.E., Dunin-Borkowski, R.E., Dahl, S., Wagner, J.B., Hansen, T.W., Nanotechnology 23, 075705 (2012).Google Scholar
Miller, B.K., Crozier, P.A., Microsc. Microanal. 19, 461 (2013).Google Scholar
Zhang, L.X., Miller, B.K., Crozier, P.A., Nano Lett. 13, 679 (2013).Google Scholar
Datye, A.K., Catal. Today 111, 59 (2006).Google Scholar
Liu, R.-J., Crozier, P.A., Smith, C.M., Hucul, D.A., Blackson, J., Salaita, G., Appl. Catal. A 282, 111 (2005).CrossRefGoogle Scholar
Hansen, T.W., Delariva, A.T., Challa, S.R., Datye, A.K., Acc. Chem. Res. 46, 1720 (2013).Google Scholar
DeLaRiva, A.T., Hansen, T.W., Challa, S.R., Datye, A.K., J. Catal. 308, 291 (2013).Google Scholar
Challa, S.R., Delariva, A.T., Hansen, T.W., Helveg, S., Sehested, J., Hansen, P.L., Garzon, F., Datye, A.K., J. Am. Chem. Soc. 133, 20672 (2011).Google Scholar
Simonsen, S.B., Chorkendorff, I., Dahl, S., Skoglundh, M., Sehested, J., Helveg, S., J. Am. Chem. Soc. 132, 7968 (2010).Google Scholar
Benavidez, A.D., Kovarik, L., Genc, A., Agrawal, N., Larsson, E.M., Hansen, T.W., Karim, A.M., Datye, A.K., ACS Catal. 2, 2349 (2012).Google Scholar
Simonsen, S.B., Chorkendorff, I., Dahl, S., Skoglundh, M., Sehested, J., Helveg, S., J. Catal. 281, 147 (2011).Google Scholar
Bañares, M.A., Wachs, I.E., J. Raman Spectrosc. 33, 359 (2002).Google Scholar
Vendelbo, S.B., Elkjær, C.F., Falsig, H., Puspitasari, I., Dona, P., Mele, L., Morana, B., Nelissen, B.J., van Rijn, R., Creemer, J.F., Kooyman, P.J., Helveg, S., Nat. Mater. 13, 884 (2014).CrossRefGoogle Scholar
Miller, B.K., Crozier, P.A., Microsc. Microanal. 20, 815 (2014).CrossRefGoogle Scholar
Crozier, P.A., Chenna, S., Ultramicroscopy 111, 177 (2011).Google Scholar
Chenna, S., Crozier, P.A., ACS Catal. 2, 2395 (2012).Google Scholar
Miller, B.K., Crozier, P.A., Microsc. Microanal. 20, 1564 (2014).Google Scholar