Skip to main content Accessibility help

In situ and operando transmission electron microscopy of catalytic materials

  • Peter A. Crozier (a1) and Thomas W. Hansen (a2)


Catalytic nanomaterials play a major role in chemical conversions and energy transformations. Understanding how materials control and regulate surface reactions is a major objective for fundamental research on heterogeneous catalysts. In situ environmental transmission electron microscopy (ETEM) is a powerful technique for revealing the atomic structures of materials at elevated temperatures in the presence of reactive gases. This approach can allow the structure–reactivity relations underlying catalyst functionality to be investigated. Thus far, ETEM has been limited by the absence of in situ measurements of gas-phase catalytic products. To overcome this deficiency, operando TEM techniques are being developed that combine atomic characterization with the simultaneous measurement of catalytic products. This article provides a short review of the current status and major developments in the application of ETEM to gas-phase catalysis over the past 10 years.



Hide All
1.Ertl, G., Knözinger, H., Weitkamp, J., Handbook of Heterogeneous Catalysis (VCH, Weinheim, Germany, 1997).
2.Somorjai, G.A., Li, Y., Introduction to Surface Chemistry and Catalysis 2nd ed.(Wiley-VCH, Weinheim, Germany, 2010), p. 442.
3.Hansen, T.W., Wagner, J.B., Hansen, P.L., Dahl, S., Topsoe, H., Jacobson, C.J.H., Science 294, 1508 (2001).
4.Baker, R.T.K., Barber, M.A., Harris, P.S., Feates, F.S., White, R.J., J. Catal. 26, 51 (1972).
5.Baker, R.T.K., Harris, P.S., Thomas, R.B., Waite, R.J., J. Catal. 30, 86 (1973).
6.Sharma, R., J. Mater. Res. 20 (7), 1695 (2005).
7.Gai, P.L., Boyes, E.D., in In-Situ Microscopy in Materials Research, Gai, P.L., Ed. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997), pp. 123146.
8.Gai, P.L., Boyes, E.D., Helveg, S., Hansen, P.L., Giorgio, S., Henry, C.R., MRS Bull. 32 (12), 1044 (2007).
9.Sharma, R., Crozier, P.A., in Handbook of Microscopy for Nanotechnology, Yao, N., Wang, Z.L., Eds. (Kluwer Academic Publishers, New York, 2005), pp. 531563.
10.Giorgio, S., Sao Joao, S., Nitsche, S., Chaudanson, D., Sitja, G., Henry, C.R., Ultramicroscopy 106, 503 (2006).
11.Parkinson, G.M., Catal. Lett. 2, 303 (1989).
12.Creemer, J.F., Helveg, S., Hoveling, G.H., Ullmann, S., Molenbroek, A.M., Sarro, P.M., Zandbergen, H.W., Ultramicroscopy 108, 993 (2008).
13.Alan, T., Yokosawa, T., Gaspar, J., Pandraud, G., Paul, O., Creemer, F., Sarro, P.M., Zandbergen, H.W., Appl. Phys. Lett. 100, 4 (2012).
14.Yokosawa, T., Alan, T., Pandraud, G., Dam, B., Zandbergen, H., Ultramicroscopy 112, 47 (2012).
15.Vendelbo, S.B., Kooyman, P.J., Creemer, J.F., Morana, B., Mele, L., Dona, P., Nelissen, B.J., Helveg, S., Ultramicroscopy 133, 72 (2013).
16.Hansen, T.W., Wagner, J.B., Dunin-Borkowski, R.E., Mater. Sci. Technol. 26, 1338 (2010).
17.Swann, P.R., Tighe, N.J., paper presented at the 5th European Congress on Electron Microscopy., Manchester, UK, Institute of Physics, Royal Microscopical Society, 1972.
18.Doole, R.C., Parkinson, G.M., Stead, J.M., Inst. Phys. Conf. Ser. 119, 157 (1991).
19.Lee, T.C., Dewald, D.K., Eades, J.A., Robertson, I.M., Birnbaum, H.K., Rev. Sci. Instrum. 62, 1438 (1991).
20.Boyes, E.D., Gai, P.L., Ultramicroscopy 67, 219 (1997).
21.Sharma, R., Weiss, K., Microsc. Res. Tech. 42, 270 (1998).
22.Hansen, P.L., Wagner, J.B., Proc. 12th Eur. Congr. Electron Microsc. (Czechoslovak Society for Electron Microscopy, Brno, Czech Republic, 2000), vol. 2, pp. 537538.
23.Jinschek, J.R., Helveg, S., Micron 43, 1156 (2012).
24.Li, P., Liu, J., Nag, N., Crozier, P.A., J. Catal. 262, 73 (2009).
25.Banerjee, R., Crozier, P.A., J. Phys. Chem. C 116, 11486 (2012).
26.Dehghan, R., Hansen, T.W., Wagner, J.B., Holmen, A., Rytter, E., Borg, O., Walmsley, J.C., Catal. Lett. 141, 754 (2011).
27.Xin, H.L.L., Pach, E.A., Diaz, R.E., Stach, E.A., Salmeron, M., Zheng, H.M., ACS Nano 6, 4241 (2012).
28.Jeangros, Q., Faes, A., Wagner, J.B., Hansen, T.W., Aschauer, U., Van Herle, J., Hessler-Wyser, A., Dunin-Borkowski, R.E., Acta Mater. 58, 4578 (2010).
29.Haruta, M., Yamada, N., Kobayashi, T., Iijima, S., J. Catal. 115, 301 (1989).
30.Giorgio, S., Cabie, M., Henry, C.R., Gold Bull. 41, 167 (2008).
31.Uchiyama, T., Yoshida, H., Kuwauchi, Y., Ichikawa, S., Shimada, S., Haruta, M., Takeda, S., Angew. Chem. Int. Ed. 50, 10157 (2011).
32.Yoshida, H., Kuwauchi, Y., Jinschek, J.R., Sun, K.J., Tanaka, S., Kohyama, M., Shimada, S., Haruta, M., Takeda, S., Science 335, 317 (2012).
33.Chenna, S., Banerjee, R., Crozier, P.A., ChemCatChem 3, 1051 (2011).
34.Chenna, S., Crozier, P.A., Micron 43, 1188 (2012).
35.Gorte, R.J., Vohs, J.M., in Annual Review of Chemical and Biomolecular Engineering, Prausnitz, J.M., Ed. (Annual Reviews, Palo Alto, CA, 2011), vol. 2, pp. 930.
36.Yeste, M.P., Hernandez, J.C., Bernal, S., Blanco, G., Calvino, J.J., Perez-Omil, J.A., Pintado, J.M., Catal. Today 141, 409 (2009).
37.Crozier, P.A., Wang, R., Sharma, R., Ultramicroscopy 108, 1432 (2008).
38.Wang, R., Crozier, P.A., Sharma, R., J. Phys. Chem. C 113, 5700 (2009).
39.Sharma, V., Crozier, P.A., Sharma, R., Adams, J.B., Catal. Today 180, 2 (2012).
40.Kudo, A., Miseki, Y., Chem. Soc. Rev. 38, 253 (2009).
41.Cavalca, F., Laursen, A.B., Kardynal, B.E., Dunin-Borkowski, R.E., Dahl, S., Wagner, J.B., Hansen, T.W., Nanotechnology 23, 075705 (2012).
42.Miller, B.K., Crozier, P.A., Microsc. Microanal. 19, 461 (2013).
43.Zhang, L.X., Miller, B.K., Crozier, P.A., Nano Lett. 13, 679 (2013).
44.Datye, A.K., Catal. Today 111, 59 (2006).
45.Liu, R.-J., Crozier, P.A., Smith, C.M., Hucul, D.A., Blackson, J., Salaita, G., Appl. Catal. A 282, 111 (2005).
46.Hansen, T.W., Delariva, A.T., Challa, S.R., Datye, A.K., Acc. Chem. Res. 46, 1720 (2013).
47.DeLaRiva, A.T., Hansen, T.W., Challa, S.R., Datye, A.K., J. Catal. 308, 291 (2013).
48.Challa, S.R., Delariva, A.T., Hansen, T.W., Helveg, S., Sehested, J., Hansen, P.L., Garzon, F., Datye, A.K., J. Am. Chem. Soc. 133, 20672 (2011).
49.Simonsen, S.B., Chorkendorff, I., Dahl, S., Skoglundh, M., Sehested, J., Helveg, S., J. Am. Chem. Soc. 132, 7968 (2010).
50.Benavidez, A.D., Kovarik, L., Genc, A., Agrawal, N., Larsson, E.M., Hansen, T.W., Karim, A.M., Datye, A.K., ACS Catal. 2, 2349 (2012).
51.Simonsen, S.B., Chorkendorff, I., Dahl, S., Skoglundh, M., Sehested, J., Helveg, S., J. Catal. 281, 147 (2011).
52.Bañares, M.A., Wachs, I.E., J. Raman Spectrosc. 33, 359 (2002).
53.Vendelbo, S.B., Elkjær, C.F., Falsig, H., Puspitasari, I., Dona, P., Mele, L., Morana, B., Nelissen, B.J., van Rijn, R., Creemer, J.F., Kooyman, P.J., Helveg, S., Nat. Mater. 13, 884 (2014).
54.Miller, B.K., Crozier, P.A., Microsc. Microanal. 20, 815 (2014).
55.Crozier, P.A., Chenna, S., Ultramicroscopy 111, 177 (2011).
56.Chenna, S., Crozier, P.A., ACS Catal. 2, 2395 (2012).
57.Miller, B.K., Crozier, P.A., Microsc. Microanal. 20, 1564 (2014).


Related content

Powered by UNSILO

In situ and operando transmission electron microscopy of catalytic materials

  • Peter A. Crozier (a1) and Thomas W. Hansen (a2)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.