Skip to main content
×
×
Home

DNA Nanotechnology: A foundation for Programmable Nanoscale Materials

  • Mark Bathe (a1) and Paul W.K. Rothemund (a2)
Abstract
Abstract

DNA nanotechnology is a materials design paradigm in which synthetic nucleic acids are used to program the structure and dynamics of nanometer-scale devices and materials. Driven by the convergence of decreasing DNA synthesis costs, advanced yet easy-to-use computational design and analysis tools, and, most importantly, a myriad of innovative studies demonstrating DNA’s extraordinary power to organize functional materials, DNA nanotechnology is spreading into diverse areas of traditional materials science. To further promote the integration of DNA nanotechnology into materials science, this issue of MRS Bulletin provides an overview of the unique capabilities offered by DNA nanotechnology, a set of practical techniques that make it accessible to a broad audience, and a vision for its future applications, described by international leaders in the field.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      DNA Nanotechnology: A foundation for Programmable Nanoscale Materials
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      DNA Nanotechnology: A foundation for Programmable Nanoscale Materials
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      DNA Nanotechnology: A foundation for Programmable Nanoscale Materials
      Available formats
      ×
Copyright
References
Hide All
1. Seeman N.C., Annu. Rev. Biochem. 79, 65 (2010).
2. Robinson B.H., Seeman N.C., Protein Eng. 1, 295 (2009).
3. Slinker J.D., Muren N.B., Renfrew S.E., Barton J.K., Nat. Chem. 3, 230 (2011).
4. Church G.M., Gao Y., Kosuri S., Clelland C.T., Science 337, 1628 (2012).
5. Zhang D.Y., Seelig G., Nat. Chem. 3, 103 (2011).
6. Rothemund P.W.K., Nature 440, 297 (2006).
7. Wei B., Dai M., Yin P., Nature 485, 623 (2012).
8. Zhang F., Jiang S., Wu S., Li Y., Mao C., Liu Y., Yan H., Nat. Nanotechnol. 10, 779 (2015).
9. Douglas S.M., Dietz H., Liedl T., Högberg B., Graf F., Shih W.M., Nature 459, 414 (2009).
10. Dietz H., Douglas S.M., Shih W.M., Science 325, 725 (2009).
11. Han D., Pal S., Nangreave J., Deng Z., Liu Y., Yan H., Science 332, 342 (2011).
12. Ke Y., Ong L.L., Shih W.M., Yin P., Science 338, 1177 (2012).
13. Benson E., Mohammed A., Gardell J., Masich S., Czeizler E., Orponen P., Högberg B., Nature 523, 441 (2015).
14. Veneziano R., Ratanalert S., Zhang K., Zhang F., Yan H., Chiu W., Bathe M., Science 352, 1534 (2016).
15. Ong L.L., Hanikel N., Yaghi O.K., Grun C., Strauss M.T., Bron P., Lai-Kee-Him J., Schueder F., Wang B., Wang P., Kishi J.Y., Myhrvold C.A., Zhu A., Jungmann R., Bellot G., Ke Y., Yin P., Nature (forthcoming), doi:10.1038/nature24648.
16. Chen Y.-J., Dalchau N., Srinivas N., Phillips A., Cardelli L., Soloveichik D., Seelig G., Nat. Nanotechnol. 8, 755 (2013).
17. Srinivas N., Parkin J., Seelig G., Winfree E., Soloveichik D., Science (forthcoming).
18. Dirks R.M., Pierce N.A., Proc. Natl. Acad. Sci. U. S. A. 101, 15275 (2004).
19. Qian L., Winfree E., Science 332, 1196 (2011).
20. Douglas S.M., Bachelet I., Church G.M., Science 335, 831 (2012).
21. Previtera M.L., Chippada U., Schloss R.S., Yurke B., Langrana N.A., Biores. Open Access 1, 256 (2012).
22. Cangialosi A., Yoon C., Liu J., Huang Q., Guo J., Nguyen T.D., Gracias D.H., Schulman R., Science 357, 1126 (2017).
23. Bertrand O.J.N., Fygenson D.K., Saleh O.A., Proc. Natl. Acad. Sci. 109, 17342 (2012).
24. Lu C.-H., Guo W., Hu Y., Qi X.-J., Willner I., J. Am. Chem. Soc. 137, 15723 (2015).
25. Shin J., Pierce N.A., J. Am. Chem. Soc. 126, 10834 (2004).
26. Omabegho T., Sha R., Seeman N.C., Science 324, 67 (2009).
27. Gu H., Chao J., Xiao S.-J., Seeman N.C., Nature 465, 202 (2010).
28. Thubagere A.J., Li W., Johnson R.F., Chen Z., Doroudi S., Lee Y.L., Izatt G., Wittman S., Srinivas N., Woods D., Winfree E., Qian L., Science 357, eaan6558 (2017).
29. Sato Y., Hiratsuka Y., Kawamata I., Murata S., Nomura S.M., Sci. Robot. 2 (4), eaal3735 (2017).
30. Fan J.A., He Y., Bao K., Wu C., Bao J., Schade N.B., Manoharan V.N., Shvets G., Nordlander P., Liu D.R., Capasso F., Nano Lett. 11, 4859 (2011).
31. Acuna G.P., Möller F.M., Holzmeister P., Beater S., Lalkens B., Tinnefeld P., Science 338, 506 (2012).
32. Puchkova A., Vietz C., Pibiri E., Wünsch B., Sanz Paz M., Acuna G.P., Tinnefeld P., Nano Lett. 15, 8354 (2015).
33. Hannestad J.K., Sandin P., Albinsson B., J. Am. Chem. Soc. 130, 15889 (2008).
34. Dutta P.K., Varghese R., Nangreave J., Lin S., Yan H., Liu Y., J. Am. Chem. Soc. 133, 11985 (2011).
35. Stein I.H., Steinhauer C., Tinnefeld P., J. Am. Chem. Soc. 133, 4193 (2011).
36. Díaz S.A., Buckhout-White S., Ancona M.G., Spillmann C.M., Goldman E.R., Melinger J.S., Medintz I.L., Adv. Opt. Mater. 4, 339 (2016).
37. Boulais E., Sawaya N., Veneziano R., Andreoni A., Banal J.L., Kondo T., Mandal S., Lin S., Schlau-Cohen G.S., Woodbury N., Yan H., Aspuru-Guzik A., Bathe M., Nat. Mater. doi:10.1038/NMAT5033.
38. King N.P., Bale J.B., Sheffler W., McNamara D.E., Gonen S., Gonen T., Yeates T.O., Baker D., Nature 510, 103 (2014).
39. Chen J., Seeman N.C., Nature 350, 631 (1991).
40. Marchi A.N., Saaem I., Vogen B.N., Brown S., LaBean T.H., Nano Lett. 14, 5740 (2014).
41. Rajendran A., Endo M., Katsuda Y., Hidaka K., Sugiyama H., ACS Nano 5, 665 (2011).
42. Woo S., Rothemund P.W.K., Nat. Chem. 3, 620 (2011).
43. Tikhomirov G., Petersen P., Qian L., Nature (forthcoming).
44. Douglas S.M., Marblestone A.H., Teerapittayanon S., Vazquez A., Church G.M., Shih W.M., Nucleic Acids Res. 37, 5001 (2009).
45. Kim D.-N., Kilchherr F., Dietz H., Bathe M., Nucleic Acids Res. 40, 2862 (2012).
46. Doye J.P.K., Ouldridge T.E., Louis A.A., Romano F., Sulc P., Matek C., Snodin B.E.K., Rovigatti L., Schreck J.S., Harrison R.M., Smith W.P.J., Phys. Chem. Chem. Phys. 15, 20395 (2013).
47. Pan K., Bricker W.P., Ratanalert S., Bathe M., Nucleic Acids Res. 45, 6284 (2017).
48. Yoo J., Aksimentiev A., Proc. Natl. Acad. Sci. U.S.A. 110, 20099 (2013).
49. Sobczak J.-P.J., Martin T.G., Gerling T., Dietz H., Science 338, 1458 (2012).
50. Dunn K.E., Dannenberg F., Ouldridge T.E., Kwiatkowska M., Turberfield A.J., Bath J., Nature 525, 82 (2015).
51. Marras A.E., Zhou L., Kolliopoulos V., Su H.-J., Castro C.E., New J. Phys. 18, 55005 (2016).
52. Majikes J.M., Nash J.A., LaBean T.H., New J. Phys. 18, 115001 (2016).
53. Lee Tin Wah J., David C., Rudiuk S., Baigl D., Estevez-Torres A., ACS Nano 10, 1978 (2016).
54. Kick B., Praetorius F., Dietz H., Weuster-Botz D., Nano Lett. 15, 4672 (2015).
55. Praetorius F., Kick B., Behler K.L., Honemann M.N., Weuster-Botz D., Dietz H., Nature (forthcoming).
56. Tilibit Nanosystems, https://www.tilibit.com.
57. Yurke B., Turberfield A.J., Mills A.P., Simmel F.C., Neumann J.L., Nature 406, 605 (2000).
58. Jungmann R., Steinhauer C., Scheible M., Kuzyk A., Tinnefeld P., Simmel F.C., Nano Lett. 10, 8870 (2010).
59. Jungmann R., Avendaño M.S., Woehrstein J.B., Dai M., Shih W.M., Yin P., Nat. Methods 11, 311 (2014).
60. Choi H.M.T., Chang J.Y., Trinh L.A., Padilla J.E., Fraser S.E., Pierce N.A., Nat. Biotechnol. 28, 1208 (2010).
61. Molecular Instruments, http://molecularinstruments.org.
62. Ultivue, https://www.ultivue.com.
63. Zhang H., Chao J., Pan D., Liu H., Huang Q., Fan C., Chem. Commun. 48, 6405 (2012).
64. Erkelenz M., Bauer D.M., Meyer R., Gatsogiannis C., Raunser S., Saccà B., Niemeyer C.M., Small 10, 73 (2014).
65. Douglas S.M., Chou J.J., Shih W.M., Proc. Natl. Acad. Sci. U.S.A. 104, 6644 (2007).
66. Siavashpouri M., Wachauf C.H., Zakhary M.J., Praetorius F., Dietz H., Dogic Z., Nat. Mater. 16, 849 (2017).
67. Praetorius F., Dietz H., Nature (forthcoming).
68. Ducani C., Kaul C., Moche M., Shih W.M., Högberg B., Nat. Methods 10, 647 (2013).
69. Sun W., Boulais E., Hakobyan Y., Wang W.L., Guan A., Bathe M., Yin P., Science 346, 1258361 (2014).
70. Shih W.M., Quispe J.D., Joyce G.F., Nature 427, 681 (2004).
71. Geary C., Rothemund P.W.K., Andersen E.S., Science 345, 799 (2014).
72. Han D., Qi X., Myhrvold C., Wang B., Dai M., Jiang S., Bates M., Liu Y., An B., Zhang F., Yan H., Yin P., Science (forthcoming).
73. Gopinath A., Rothemund P.W.K., ACS Nano 8, 12030 (2014).
74. Perrault S.D., Shih W.M., ACS Nano 8, 5132 (2014).
75. Kiviaho J.K., Linko V., Ora A., Tiainen T., Järvihaavisto E., Mikkilä J., Tenhu H., Nonappa N., Kostiainen M.A., Nanoscale 8, 11674 (2016).
76. Dunlop J.W.C., Weinkamer R., Fratzl P., Mater. Today 14, 70 (2011).
77. Wang P., Chatterjee G., Yan H., LaBean T.H., Turberfield A.J., Castro C.E., Seelig G., Ke Y., MRS Bull. 42 (12), 889 (2017).
78. Gothelf K.V., MRS Bull. 42 (12), 897 (2017).
79. Seeman N.C., Gang O., MRS Bull. 42 (12), 904 (2017).
80. Simmel F.C., Schulman R., MRS Bull. 42 (12), 913 (2017).
81. Grossi G., Jaekel A., Andersen E.S., Saccà B., MRS Bull. 42 (12), 920 (2017).
82. Castro C.E., Dietz H., Högberg B., MRS Bull. 42 (12), 925 (2017).
83. Weizmann Y., Andersen E.S., MRS Bull. 42 (12), 930 (2017).
84. Pilo-Pais M., Acuna G.P., Tinnefeld P., Liedl T., MRS Bull. 42 (12), 936 (2017).
85. Xu A., Harb J., Kostiainen M.A., Hughes W.L., Woolley A., Liu H., Gopinath A., MRS Bull. 42 (12), 943 (2017).
86. Graugnard E., Hughes W.L., Jungmann R., Kostiainen M.A., Linko V., MRS Bull. 42 (12), 951 (2017).
87. Gattaquant DNA Nanotechnologies, http://www.gattaquant.com.
88. Jain A., Ong S.P., Hautier G., Chen W., Richards W.D., Dacek S., Cholia S., Gunter D., Skinner D., Ceder G., Persson K.A., APL Mater. 1, 011002 (2013), doi:10.1063/1.4812323.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 197
Total number of PDF views: 323 *
Loading metrics...

Abstract views

Total abstract views: 414 *
Loading metrics...

* Views captured on Cambridge Core between 8th December 2017 - 17th January 2018. This data will be updated every 24 hours.