Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-18T02:28:12.129Z Has data issue: false hasContentIssue false

Engineered proteins and three-dimensional printing of living materials

Published online by Cambridge University Press:  10 December 2020

Ram Surya Gona
Affiliation:
University of Rochester, USA; rgona@ur.rochester.edu
Anne S. Meyer
Affiliation:
University of Rochester, USA; anne.meyer@rochester.edu
Get access

Abstract

Additive manufacturing is a revolutionary three-dimensional (3D) printing technology that has applications in a vast number of fields from aerospace to biological engineering. In the field of bioengineering, it was recently discovered that the principles used in 3D bioprinting of organs and tissues could also be used to 3D print biological materials produced by genetically engineered bacteria. This new technology requires the development of modified bio-ink and optimized printing parameters to promote bacterial physiology while allowing printability. In this article, we highlight the recent advancements in additive manufacturing of engineered living materials using bacteria and their potential applications. We will discuss recent progress and significance of additive manufacturing of proteins and polypeptides produced in situ by engineered bacteria to make multifunctional materials. Finally, we discuss the challenges and prospects of this technology and highlight some of the biomaterials that may benefit from additive manufacturing with bacteria.

Type
Engineered Proteins as Multifunctional Materials
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Koch, J., Gantenbein, S., Masania, K., Stark, W.J., Erlich, Y., Grass, R.N., Nat. Biotechnol. 38, 39 (2020).CrossRefGoogle Scholar
Lee, A., Hudson, A.R., Shiwarski, D.J., Tashman, J.W., Hinton, T.J., Yerneni, S., Bliley, J.M., Campbell, P.G., Feinberg, A.W., Science 80 365, 482 (2019).CrossRefGoogle Scholar
Lehner, B.A.E., Schmieden, D.T., Meyer, A.S., ACS Synth. Biol. 6, 1124 (2017).CrossRefGoogle Scholar
Chung, J.H.Y., Naficy, S., Yue, Z., Kapsa, R., Quigley, A., Moulton, S.E., Wallace, G.G., Biomater. Sci. 1, 763 (2013).CrossRefGoogle Scholar
Nguyen, P.Q., Courchesne, N.M.D., Duraj-Thatte, A., Praveschotinunt, P., Joshi, N.S., Adv. Mater. 30, e1704847 (2018).CrossRefGoogle Scholar
Schmieden, D.T., Basalo Vázquez, S.J., Sangüesa, H., Van Der Does, M., Idema, T., Meyer, A.S., ACS Synth. Biol. 7, 1328 (2018).CrossRefGoogle Scholar
Spiesz, E.M., Yu, K., Lehner, B.A.E., Schmieden, D.T., Aubin-Tam, M.-E., Meyer, A.S., J. Vis. Exp. (2019).Google Scholar
González, L.M., Mukhitov, N., Voigt, C.A., Nat. Chem. Biol. 16, 126 (2020).CrossRefGoogle Scholar
Schaffner, M., Rühs, P.A., Coulter, F., Kilcher, S., Studart, A.R., Sci. Adv. 3, eaa06804 (2017).CrossRefGoogle Scholar
Liu, X., Yuk, H., Lin, S., Parada, G.A., Tang, T.C., Tham, E., de la Fuente-Nunez, C., Lu, T.K., Zhao, X., Adv. Mater. 30 (2018).Google Scholar
Connell, J.L., Ritschdorff, E.T., Whiteley, M., Shear, J.B., Proc. Natl. Acad. Sci. U.S.A. 110, 18380 (2013).CrossRefGoogle Scholar
Lee, K.Y., Mooney, D.J., Prog. Polym. Sci. 37, 106 (2012).CrossRefGoogle Scholar
Huang, J., Liu, S., Zhang, C., Wang, X., Pu, J., Ba, F., Xue, S., Ye, H., Zhao, T., Li, K., Wang, Y., Zhang, J., Wang, L., Fan, C., Lu, T.K., Zhong, C., Nat. Chem. Biol. 15, 34 (2019).CrossRefGoogle Scholar
Smith, R.S.H., Bader, C., Sharma, S., Kolb, D., Tang, T.C., Hosny, A., Moser, F., Weaver, J.C., Voigt, C.A., Oxman, N., Adv. Funct. Mater. 30 (2020).Google Scholar
Tallawi, M., Opitz, M., Lieleg, O., Biomater. Sci. 5, 887 (2017).CrossRefGoogle Scholar
Wang, X., Pu, J., Liu, Y., Ba, F., Cui, M., Li, K., Xie, Y., Nie, Y., Mi, Q., Li, T., Liu, L., Zhu, M., Zhong, C., Natl. Sci. Rev. 6, 929 (2019).CrossRefGoogle Scholar
Nguyen, P.Q., Botyanszki, Z., Tay, P.K.R., Joshi, N.S., Nat. Commun. 5 (2014).Google Scholar
Balasubramanian, S., Aubin-Tam, M.E., Meyer, A.S., ACS Synth. Biol. 8, 1564 (2019).CrossRefGoogle Scholar
Mankar, S., Anoop, A., Sen, S., Maji, S.K., Nano Rev. 2, 6032 (2011).CrossRefGoogle Scholar
Sulaeva, I., Henniges, U., Rosenau, T., Potthast, A., Biotechnol. Adv. 33, 1547 (2015).CrossRefGoogle Scholar
Gorgieva, S., Trček, J., Nanomaterials 9, 1352 (2019).CrossRefGoogle Scholar
Nimeskern, L., Martínez Ávila, H., Sundberg, J., Gatenholm, P., Müller, R., Stok, K.S., J. Mech. Behav. Biomed. Mater. 22, 12 (2013).CrossRefGoogle Scholar
Florea, M., Hagemann, H., Santosa, G., Abbott, J., Micklem, C.N., Spencer-Milnes, X., De Arroyo Garcia, L., Paschou, D., Lazenbatt, C., Kong, D., Chughtai, H., Jensen, K., Freemont, P.S., Kitney, R., Reeve, B., Ellis, T., Proc. Natl. Acad. Sci. U.S.A. 113, E3431 (2016).CrossRefGoogle Scholar
Yadav, V., Paniliatis, B.J., Shi, H., Lee, K., Cebe, P., Kaplan, D.L., Appl. Environ. Microbiol. 76, 6257 (2010).CrossRefGoogle Scholar
Rühs, P.A., Storz, F., López Gómez, Y.A., Haug, M., Fischer, P., NPJ Biofilms Microbiomes 4, 21 (2018).CrossRefGoogle Scholar
Markstedt, K., Mantas, A., Tournier, I., Martínez Ávila, H., Hägg, D., Gatenholm, P., Biomacromolecules 16, 1489 (2015).CrossRefGoogle Scholar
Bottan, S., Robotti, F., Jayathissa, P., Hegglin, A., Bahamonde, N., Heredia-Guerrero, J.A., Bayer, I.S., Scarpellini, A., Merker, H., Lindenblatt, N., Poulikakos, D., Ferrari, A., ACS Nano 9, 206 (2015).CrossRefGoogle Scholar
Liu, X., Tang, T.C., Tham, E., Yuk, H., Lin, S., Lu, T.K., Zhao, X., Proc. Natl. Acad. Sci. U.S.A. 114, 2200 (2017).CrossRefGoogle Scholar
Guo, S., Dubuc, E., Rave, Y., Verhagen, M., Twisk, S.A.E., Van Der Hek, T., Oerlemans, G.J.M., Van Den Oetelaar, M.C.M., Van Hazendonk, L.S., Brüls, M., Eijkens, B. V, Joostens, P.L., Keij, S.R., Xing, W., Nijs, M., Stalpers, J., Sharma, M., Gerth, M., Boonen, R.J.E.A., Verduin, K., Merkx, M., Voets, I.K., De Greef, T.F.A., ACS Synth. Biol. 9, 475 (2020).CrossRefGoogle Scholar
Johnston, T.G., Yuan, S.F., Wagner, J.M., Yi, X., Saha, A., Smith, P., Nelson, A., Alper, H.S., Nat. Commun. 11, 563 (2020).CrossRefGoogle Scholar
Heveran, C.M., Williams, S.L., Qiu, J., Artier, J., Hubler, M.H., Cook, S.M., Cameron, J.C., Srubar, W. V., Matter 2, 481 (2020).CrossRefGoogle Scholar
Spiesz, E.M., Schmieden, D.T., Grande, A.M., Liang, K., Schwiedrzik, J., Natalio, F., Michler, J., Garcia, S.J., Aubin-Tam, M.E., Meyer, A.S., Small 15, 1970119 (2019).CrossRefGoogle Scholar