Skip to main content

Erbium-Doped Optical-Waveguide Amplifiers on Silicon


Thin-film integrated optics is becoming more and more important in optical-communications technology. The fabrication of passive devices such as planar optical waveguides, splitters, and multiplexers is now quite well-developed. Devices based on this technology are now commercially available. One step to further improve this technology is to develop optical amplifiers that can be integrated with these devices. Such amplifiers can compensate for the losses in splitters or other optical components, and can also serve as pre-amplifiers for active devices such as detectors.

In optical-fiber technology, erbium-doped fiber amplifiers, are used in long-distance fiber-communications links. They use an optical transition in Er3+ at a wavelength of 1.54 μm for signal amplification, and their success has set a standard of optical communication at this wavelength. Using the same concept of Er doping, planar-waveguide amplifiers are now being developed. For these devices, silicon is often used as a substrate, so that optoelectronic integration with other devices in or on Si (electrical devices, or Si-based light sources, detectors, and modulators) may become possible. Figure 1 shows an example of a silicon-based optical integrated circuit5 in which a 1 × 4 splitter is combined with an amplifying section.

Hide All
1.Miniscalco W.J., J. Lightwave Technol. 9 (1991) p. 234.
2.Polman A., J. Appl. Phys. 82 (1997) p. 1.
3.Mears P.J., Reekie L., Jauncey I.M., and Payne D.N., Electron. Lett. 23 (1987) p. 1026.
4.Desurvire E., Erbium-Doped Fiber Amplifiers: Principles and Applications (John Wiley & Sons, New York, 1994).
5.van den Hoven G.N., PhD dissertation, University of Utrecht, 1996.
6. For example, see Townsend P.D., Optical Effects of Ion Implantation (Cambridge University Press, Cambridge, 1994).
7.Ramaswamy R.V. and Srivastava R., J. Lightwave Technol. 6 (1988) p. 984.
8.Hattori K., Kitagawa T., Oguma M., Wada M., Temmyo J., and Horiguchi M., Electron. Lett. 29 (1993) p. 357.
9.Smit M., PhD dissertation, Delft University of Technology, 1991.
10.van den Hoven G.N., Koper R.J.I.M., Polman A., van Dam C., van Uffelen J.W.M., and Smit M.K., Appl. Phys. Lett. 68 (1996) p. 1886.
11.Arai K., Namikawa H., Kumata K., Honda T., Ishii Y., and Handa T., J. Appl. Phys. 59 (1986) p. 3430.
12.van den Hoven G.N., Snoeks E., Polman A., van Uffelen J.W.M., Oei Y.S., and Smit M.K., Appl. Phys. Lett. 62 (1993) p. 3065.
13.van den Hoven G.N., Polman A., Alves E., da Silva M.F., Melo A.A., and Soares J.C., J. Mater. Res. 12 (1997) p. 1401.
14.Hoekstra T., PhD dissertation, Twente University of Technology, 1994.
15.Hehlen M.P., Cockroft N.J., Gosnell T.R., and Bruce A.J., Phys. Rev. B 56 (1997) p. 9302.
16.van den Hoven G.N., Snoeks E., Polman A., van Dam C., van Uffelen J.W.M., and Smit M.K., J. Appl. Phys. 79 (1996) p. 1258.
17.Snoeks E., van den Hoven G.N., Polman A., Hendriksen B., Diemeer M.B.J., and Priolo F., J. Opt. Soc. Am. B 23 (1995) p. 1468.
18.Kik P.G., Polman A., van Uffelen J.W.M., and Smit M.K. (unpublished data).
19.Auzel F., in Radiationless Processes, edited by DiBartolo B. (Plenum Press, New York, 1980).
20.Snoeks E., Kik P.G., and Polman A., Opt. Mater. 5 (1996) p. 159.
21.Yan Y., Faber A.J., and de Waal H., J. Non-Cryst. Solids 181 (1995) p. 283.
22.van den Hoven G.N., van der Elsken J.A., Polman A., van Dam C., van Uffelen J.W.M., and Smit M.K., Appl. Opt. 36 (1997) p. 3338.
23.Hattori K., Kitagawa T., Oguma M., Ohmori Y., and Horiguchi M., Electron. Lett. 30 (1994) p. 856.
24.Ghosh R.N., Shumulovich J., Kane C.F., de Barros M.R.X., Nykolak G., Bruce A.J., and Becker P.C., IEEE Photonics Technol. Lett. 8 (1996) p. 518.
25.Shumulovich J., Wong A., Wong Y.H., Becker P.C., Bruce A.J., and Adar R., Electron. Lett. 28 (1992) p. 1181.
26.Barbier D., Delavaux J-M., Kevorkian A., Gastaldo P., and Jouanno J.M., in Proc. OFC ′95 (San Diego, 1995).
27.Delavaux J-M.P., Granlund S., Mizuhara O., Tzeng L.D., Barbier D., Rattay M., Andre F. Saint, and Kevorkian A., IEEE Photonics Technol. Lett. 9 (1997) p. 247.
28.van Weerden H.J., Hoekstra T.H., Lambeck P.V., and Popma Th.J.A., in Proc. 8th European Conf. Integrated Optics (Stockholm, 1997) p. 169.
29.Yan Y.C., Faber A.J., de Waal H., Polman A., and Kik P.G., Appl. Phys. Lett. 71 (1997) p. 2922.
30.Slooff L.H., Polman A., Wolbers M.P. Oude, van Veggel F.C.J.M., Reinhoudt D.N., and Hofstraat J.W., J. Appl. Phys. 83 (1998) p. 497.
31.Wolbers M.P. Oude, PhD dissertation, University of Twente, 1997.
32.Slooff L.H., Polman A., Wolbers M.C. Oude, van Veggel F.C.J.M., Reinhoudt D.N., and Hofstraat J.W. (unpublished data).
33.Polman A., van den Hoven G.N., Custer J.S., Shin J.H., Serna R., and P.Alkemade P.F.A., J. Appl. Phys. 77 (1995) p. 1256.
34.Franzò G., Coffa S., Priolo F., and Spinella C., J. Appl. Phys. 81 (1997) p. 2784.
35.Zheng B., Michel J., Ren F.Y.G., Kimerling L.C., Jacobson D.C., and Poate J.M., Appl. Phys. Lett. 64 (1994) p. 2842.
36.Coffa S., Franzò G., and Priolo F., Appl. Phys. Lett. 69 (1996) p. 2077.
37.Palm J., Gan F., Zheng B., Michel J., and Kimerling L.C., Phys. Rev. B 54 (1996) p. 17603.
38.Serna R., Shin Jung H., Lohmeier M., Vlieg E., Polman A., and Alkemade P.F.A., J. Appl. Phys. 79 (1996) p. 2658.
39.Reittinger A., Stimmer J., and Abstreiter G., Appl. Phys. Lett. 70 (1997) p. 2431.
40.Agarwal A.M., Liao L., Foresi J.S., Black M.R., Duan X., and Kimerling L.C., J. Appl. Phys. 80 (1996) p. 6120.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 42 *
Loading metrics...

Abstract views

Total abstract views: 223 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th November 2017. This data will be updated every 24 hours.