Skip to main content Accessibility help
×
×
Home

Fundamentals of Focused Ion Beam Nanostructural Processing: Below, At, and Above the Surface

  • Warren J. MoberlyChan, David P. Adams, Michael J. Aziz, Gerhard Hobler and Thomas Schenkel...
Abstract

This article considers the fundamentals of what happens in a solid when it is impacted by a medium-energy gallium ion. The study of the ion/sample interaction at the nanometer scale is applicable to most focused ion beam (FIB)–based work even if the FIB/sample interaction is only a step in the process, for example, micromachining or microelectronics device processing. Whereas the objective in other articles in this issue is to use the FIB tool to characterize a material or to machine a device or transmission electron microscopy sample, the goal of the FIB in this article is to have the FIB/sample interaction itself become the product. To that end, the FIB/sample interaction is considered in three categories according to geometry: below, at, and above the surface. First, the FIB ions can penetrate the top atom layer(s) and interact below the surface. Ion implantation and ion damage on flat surfaces have been comprehensively examined; however, FIB applications require the further investigation of high doses in three-dimensional profiles. Second, the ions can interact at the surface, where a morphological instability can lead to ripples and surface self-organization, which can depend on boundary conditions for site-specific and compound FIB processing. Third, the FIB may interact above the surface (and/or produce secondary particles that interact above the surface). Such ion beam–assisted deposition, FIB–CVD (chemical vapor deposition), offers an elaborate complexity in three dimensions with an FIB using a gas injection system. At the nanometer scale, these three regimes—below, at, and above the surface—can require an interdependent understanding to be judiciously controlled by the FIB.

Copyright
References
Hide All
1.Orloff, J., Utlaut, M., Swanson, L., High Resolution FIB and its Applications (Kluwer Academic/Plenum, New York, 2003).
2.Giannuzzi, L.A., Stevie, F.A., Introduction to FIB (Springer, New York, 2005).
3. See the introductory article by C.A. Volkert and A.M. Minor in this issue.
4.Chason, E. et al., Appl. Phys. Rev. 81 (10), 6513 (1997).
5.Ji, Q. et al., Nucl. Instrum. Methods Phys. Res. Sect. B 241, 335 (2005).
6. See the article by R. Langford et al. in this issue.
7.Ziegler, J.F., SRIM (2006), http://www.srim.org.
8.Ryssel, H., Ruge, I., Ion Implantation (Wiley, New York, 1986).
9.Cerva, H., Hobler, G., J. Electrochem. Soc. 139 (12), 3631 (1992).
10.Möller, W., Posselt, M., TRIDYN_FZR User Manual (Forschungszentrum Rossendorf, Dresden, Germany).
11.Giannuzzi, L.A., Microsc. Microanal. 12 (2), 1260 (2006).
12.Adams, D.P., Vasile, M.J., J. Vac. Sci. Technol., B 24 (2), 836 (2006).
13.Lugstein, A., Brezna, W., Hobler, G., Bertagnolli, E., J. Vac. Sci. Technol., A 21, 1644 (2003).
14.Hobler, G., Lugstein, A., Brezna, W., Bertagnolli, E., in Mater. Res. Soc. Symp. Proc. 792, Wang, L.-M. et al., Eds. (Warrendale, PA, 2003) pp. 635640.
15.Kim, H.B., Hobler, G., Lugstein, A., Bertagnolli, E., J. Micromech. Microeng. (2007) in press.
16.Boxleitner, W., Hobler, G., Nucl. Instrum. Methods Phys. Res., Sect. B 180, 125 (2001).
17.Shinada, T., Okamoto, S., Kobayashi, T., Ohdomari, I., Nature 437, 1128 (2005).
18.Schenkel, T., Nature Mater. 4, 799 (2005).
19.Kane, B.E., Nature 393, 133 (1998).
20.Schenkel, T. et al., Appl. Phys. Lett. 88, 112101 (2006).
21.Clark, R.G. et al., Philos. Trans. R. Soc. London, Ser. A, 361, 1451 (2003).
22.Reuss, R.H. et al., J. Vac. Sci. Technol., B 4, 290 (1986).
23.Persaud, A. et al., Nano Lett. 5, 1087 (2005).
24.Schenkel, T. et al., J. Vac. Sci. Technol., B 21, 2720 (2003).
25.Baragiola, R.A., Nucl. Instrum. Methods Phys. Res. B 78, 223 (1993).
26.Schenkel, T. et al., Microelectron. Eng. 8, 1814 (2006).
27.Jamieson, D.N. et al., Appl. Phys. Lett. 86, 202101 (2005).
28.Sigmund, P., J. Mater. Sci. 8, 1545 (1973).
29.Appleton, B.R. et al., Appl. Phys. Lett. 41 (8), 711 (1982).
30.Stevie, F.A., Kahora, P.M., Simons, D.S., Chi, P., J. Vac. Sci. Technol., A 6, 76 (1988).
31.Bradley, R.M., Harper, J.M.E., J. Vac. Sci. Technol., A 6, 2390 (1988).
32.Mayer, T.M., Chason, E., Howard, A.J., J. Appl. Phys. 76 (3), 1634 (1994).
33.Carter, G., Vishnyakov, V., Phys. Rev. B 54, 17647 (1996).
34.Facsko, S. et al., Science 285, 1551 (1999).
35.Erlebacher, J. et al., Phys. Rev. Lett. 82 (11), 2330 (1999).
36.Datta, A., Wu, Y.R., Wang, Y.L., Phys. Rev. B 63, 125407 (2001).
37.Habenicht, S., Lieb, K.P., Koch, J., Wieck, A.D., Phys. Rev. B 65, 115327 (2002).
38. W.L Chan, Pavenayotin, N., Chason, E., Phys. Rev. B 69, 245413 (2004).
39.Ichim, S., Aziz, M.J., J. Vac. Sci. Technol., B 23, 1068 (2005).
40.Mayer, T.M., Adams, D.P., Vasile, M.J., Archuleta, K.M., J. Vac. Sci. Technol., A 23, 1579 (2005).
41.Gray, J.L., Atha, S., Hull, R., Floro, J.A., Nano Lett. 4 (12), 2447 (2004).
42.Aziz, M.J., Mat. Fys. Medd. Dan Vid Selsk (2006) in press.
43.Makeev, M.A., Cuerno, R., Barabasi, A.L., Nucl. Instrum. Methods Phys. Res., Sect. B 197, 185 (2002).
44.Levi-Setti, R., Fox, T.R., Lam, K., Nucl. Instr. Meth. 205, 299 (1983).
45.Kempshall, B.W. et al., J. Vac. Sci. Technol., B 19, 729 (2001).
46.Castro, M., Cuerno, R., Vazquez, L., Gago, R., Phys. Rev. Lett. 94, 016102 (2005).
47.Chen, H.H. et al., Science 310, 294 (2005).
48.Teichert, J., Bischoff, L., Kohler, B., Appl. Phys. Lett. 69 (11), 1544 (1996).
49.Cuenat, A., Aziz, M.J., in Mater. Res. Soc. Symp. Proc. 696, E.A. Stach, E.H. Chason, R. Hull, S.D. Bader, Eds. (2002) pp. 3136.
50.MoberlyChan, W.J., Felter, T.E., Wall, M.A., Microsc. Today, 28 (November 2006).
51.Santamore, D., Edinger, K., Orloff, J., Melngailis, J., J.Vac. Sci. Technol., B 15, 2346 (1997).
52.Cuenat, A., Adv. Mater. 17, 2845 (2005).
53.Adams, D.P., Vasile, M.J., Mayer, T.M., Hodges, V.C., J. Vac. Sci. Technol., B 21, 2334 (2003).
54.Wendt, U., Nolze, G., Heyse, H., Microsc. Microanal. 12 (suppl. 2), 1302 (2006).
55.MoberlyChan, W.J., Reyntjens, S., Minor, A.M., Microsc. Microanal. 12 (suppl. 2), 1268 (2006).
56.Valbusa, U., Boragno, C., Buatier de Mongeot, F., J. Phys.: Condens. Matter 14, 8153 (2002).
57.Brown, A.D., Erlebacher, J., Chan, W.L., Chason, E., Phys. Rev. Lett. 95, 056101 (2005).
58.Stanishevsky, A., Thin Solid Films 398–399, 560 (2001).
59.Adams, D.P., Mayer, T.M., Vasile, M.J., Archuleta, K., Appl. Surf. Sci. 252, 2432 (2006).
60.Russell, P.E. et al., J. Vac. Sci. Technol., B 16 (4), 2494 (1998).
61.Carter, G., J. Appl. Phys. 85 (1), 455 (1999).
62.Lugstein, A., Basnor, B., Bertagnolli, E., J. Vac. Sci. Technol., B 20, 2238 (2002).
63.MoberlyChan, W.J., Mater. Res. Soc. Symp. Proc. 960, N1002 (2006).
64.Adams, D.P., Vasile, M.J., Mayer, T.M., J. Vac. Sci. Technol., B 24 (4), 1766 (2006).
65.Ishitani, T., Yaguchi, T., Microsc. Res. Technol. 35, 320 (1996).
66.Ihsitani, T., Ohnishi, T., J. Vac. Sci. Technol., A 9, 3084 (1991).
67.Vasile, M.J., Xie, J., Nassar, R., J. Vac. Sci. Technol., B 17 (6), 3085 (1999).
68.Facsko, S. et al., Phys. Rev. B 69, 153412 (2004).
69.Karolewski, M.A., Nucl. Instrum. Methods Phys. Res., Sect. B 230, 402 (2005); Kalypso software, www.geocities.com/karolewski/Kalypso.
70.Tosin, P., Blatter, A., Luthy, W., J. Appl. Phys. 76 (6), 3797 (1995).
71.Ozhan, A.M. et al., Appl. Phys. Lett. 75 (23), 3716 (1999).
72.Coyne, E., Magee, J., Mannion, P., O'Connor, G., Proc. SPIE 4876, 487 (2003).
73.Brooks, J.N., Fusion Eng. Des. 60, 515 (2002).
74.Ishitani, T., Koike, H., Yaguchi, T., Kamino, T., J. Vac. Sci. Technol., B 16 (4), 1907 (1998).
75.Michael, J.R., Microsc. Microanal. 12 (2), 1248 (2005).
76.Carter, G., Vacuum 80, 475 (2006).
77.Kammler, M., Hull, R., Reuter, M.C., Ross, F.M., Appl. Phys. Lett. 82, 1903 (2003).
78.Bergman, A.A. et al., Langmuir 14, 6785 (1998).
79.Gamo, K. et al., Jpn. J. Appl. Phys. 23, L293 (1984).
80.Shedd, G.M., Lezec, H., Dubner, A.D., Melngailis, J., Appl. Phys. Lett. 49, 1584 (1986).
81.Kaufmann, H.C., Thompson, W.B., Dunn, G.J., Proc. SPIE 632, 60 (1986).
82.Harriott, L.R., Vasile, M.J., J. Vac. Sci. Technol., B 6, 1035 (1988).
83.Kubena, R.L., Stratton, F.P., Mayer, T.M., J. Vac. Sci. Technol., B 6, 1865 (1988).
84.Gross, M.E., Harriott, L.R., Opila, R.L. Jr., J. Appl. Phys. 68, 4820 (1990).
85.Blauner, P.G., Ro, J.S., Butt, Y., Melngailis, J., J. Vac. Sci. Technol., B 7, 609 (1989).
86.Young, R.J., Cleaver, J.R.A., Ahmed, H., J. Vac. Sci. Technol., B 11 (2), 234 (1993).
87.Funatsu, J., Thompson, C.V., Melngailis, J., Walpole, J.N., J. Vac. Sci. Technol., B 14, 179(1996).
88.Vasile, M.J., Harriott, L.R., J. Vac. Sci. Technol., B 7, 1954 (1989).
89.Ro, J.S., Thompson, C.V., Melngailis, J., Thin Solid Films 258, 333 (1995).
90.Chiang, T.P., Sawin, H.H., Thompson, C.V., J. Vac. Sci. Technol., A 15, 3104 (1997).
91.Dubner, A.D., Wagner, A., Melngailis, J., Thompson, C.V., J. Appl. Phys. 70, 665 (1991).
92.Melngailis, J., Proc. SPIE 1465, 36 (1991).
93.Ray, V., J. Vac. Sci. Technol., B 22 (6), 3008 (2004).
94.Ishitani, T., Ohnishi, T., Kawanami, Y., Jpn. J. Appl. Phys. 29, 2283 (1990).
95.Vasile, M.J. et al., Rev. Sci. Instrum. 62, 2167 (1991).
96. See the article by Uchic, M. et al. in this issue.
97.Melngailis, J., J. Vac. Sci. Technol., B 5, 469 (1987).
98.Harriott, L.R., Appl. Surf. Sci. 36, 432 (1989).
99.Economou, W.P., Shaver, D.C., Ward, B., Proc. SPIE 773, 201 (1987).
100.Yamamoto, M. et al., Proc. SPIE 632, 97 (1986).
101.Puers, R., Reyntjens, S., De Bruyker, D., Sens. Actuators, A 97–98, 208 (2002).
102.Khizroev, S., Bain, J.A., Litvinov, D., Nanotechnology 13, 619 (2002).
103.Ford, E.M., Ahmed, H., Appl. Phys. Lett. 75, 421 (1999).
104.Ebbesen, T.W. et al., Nature 382, 54 (1996).
105.Demarco, A.J., Melngailis, J., J. Vac. Sci. Technol., B 17, 3154 (1999).
106.Morita, T. et al., J. Vac. Sci. Technol., B 21, 2737 (2003).
107.Kometani, R. et al., Microelectron. Eng. 83, 1642 (2006).
108.Lin, J.-F., Bird, J.P., Rotkina, L., Bennett, P.A., Appl. Phys. Lett. 82, 802 (2003).
109.Sanchez, E.J., Krug, J.T., Xie, X.S., Rev. Sci. Instrum. 73 (11), 3901 (2002).
110.Botman, A., Mulders, J.J.L., Weemaes, R., Mentink, S., Nanotechnology 17, 3779 (2006).
111.Blauner, P.G. et al., J. Vac. Sci. Technol., B 7, 1816 (1989).
112.Campbell, A.N. et al., Proc. 23rd Int. Symp. Testing Failure Analysis (1997) p. 223.
113.Edinger, K., Melngailis, J., Orloff, J., J. Vac. Sci. Technol., B 16, 3311 (1998).
114.Reyntjens, S., Puers, R., J. Micromech. Microeng. 10, 181 (2000).
115.Ishida, M. et al., J. Vac. Sci. Technol., B 21, 2728 (2003).
116.Nakamatsu, K.-I. et al., J. Vac. Sci. Technol., B 23, 2801 (2005).
117.Tao, T., Ro, J., Melngailis, J., J. Vac. Sci. Technol., B 8, 1826 (1990).
118.Smith, N. et al., J. Vac. Sci. Technol., B 24 (6), 2902 (2006).
119.Mayer, T.M., Allen, S.D., Thin Film Processes II, Vossen, J.L., Kern, W., Eds. (Academic Press, New York, 1991) pp. 621670.
120. FEI Co. SPI-mode technology, www.feico.com.
121. Zeiss technology, www.smt.zeiss.com/nts.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Bulletin
  • ISSN: 0883-7694
  • EISSN: 1938-1425
  • URL: /core/journals/mrs-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed