Skip to main content Accessibility help
×
Home

High-temperature materials for structural applications: New perspectives on high-entropy alloys, bulk metallic glasses, and nanomaterials

  • E-Wen Huang (a1) and Peter K. Liaw (a2)

Abstract

Tougher, lighter, and more formable and machinable metals for broader ranges of applications at higher temperatures are needed now more than ever. High-performance computing, high-resolution microscopy, and advanced spectroscopy methods, including neutrons and synchrotron x-rays, together with advances in metallurgy and metal mixology, reveal the potential of multicomponent advanced metals, such as multicomponent bulk metallic glasses and advanced high-entropy alloys. The development of new experimental approaches relates bulk properties and voxel-associated optimized properties throughout structures with high resolution. The correlations from in situ measurements greatly improve crystal plasticity-based models. This issue of MRS Bulletin overviews recent progress in the field, and this article highlights the importance of these new perspectives. The latest progress and directions in the science and technology for prospective high-temperature metals for structural applications are reported.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      High-temperature materials for structural applications: New perspectives on high-entropy alloys, bulk metallic glasses, and nanomaterials
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      High-temperature materials for structural applications: New perspectives on high-entropy alloys, bulk metallic glasses, and nanomaterials
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      High-temperature materials for structural applications: New perspectives on high-entropy alloys, bulk metallic glasses, and nanomaterials
      Available formats
      ×

Copyright

References

Hide All
1.Lu, K., Science 328, 319 (2010).
2.Stoloff, N.S., Liu, C.T., Deevi, S.C., Intermetallics 8, 1313 (2000).
3.Alamo, A., Lambard, V., Averty, X., Mathon, M.H., J. Nucl. Mater. 329, 333 (2004).
4.Darolia, R., JOM 43, 44 (1991).
5.Heilmaier, M., Krüger, M., Saage, H., Rösler, J., Mukherji, D., Glatzel, U., Völkl, R., Hüttner, R., Eggeler, G., Somsen, Ch., Depka, T., Christ, H.-J., Gorr, B., Burk, S., JOM 61, 61 (2009).
6.Ashby, M.F., Greer, A.L., Scr. Mater. 54, 321 (2006).
7.Jewell, J., Vinichenko, V., Nacke, L., Cherp, A., Nat. Clim. Change 9, 592 (2019).
8.Peng, W., Wagner, F., Ramana, M.V., Zhai, H., Small, M.J., Dalin, C., Zhang, X., Mauzerall, D.L., Nat. Sustain. 1, 693 (2018).
9.Oberschelp, C., Pfister, S., Raptis, C.E., Hellweg, S., Nat. Sustain. 2, 113 (2019).
10.Chu, S., Majumdar, A., Nature 488, 294 (2012).
11.Bright Hub Engineering, “What Is a Supercritical Power Plant?” (June 18, 2015), http://www.brighthubengineering.com/power-plants/32893-what-is-a-supercritical-power-plant.
13.Bhadeshia, H.K.D.H., ISIJ Int . 41, 626 (2001).
14.Darolia, R., Int. Mater. Rev. 64, 355 (2019).
15.Fenn, J., Blosch, M., (2019), https://www.gartner.com/en/documents/3887767.
16.Subramanian, P.R., Mendiratta, M.G., Dimiduk, D.M., JOM 48, 33 (1996).
21.Seifi, M., Salem, A., Beuth, J., Harrysson, O., Lewandowski, J.J., JOM 68, 747 (2016).
23.Yeh, J.-W., Chen, S.-K., Lin, S.-J., Gan, J.-Y., Chin, T.-S., Shun, T.-T., Tsau, C.-H., Chang, S.-Y., Adv. Eng. Mater. 6, 299 (2004).
24.Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., Ritchie, R.O., Science 345, 1153 (2014).
25.Senkov, O.N., Wilks, G.B., Miracle, D.B., Chuang, C.P., Liaw, P.K., Intermetallics 18, 1758 (2010).
26.CES Selector software, Granta Design Limited, Cambridge, UK, (2018), www.grantadesign.com.
27.Senkov, O.N., Miracle, D.B., Chaput, K.J., Couzinie, J.-P., J. Mater. Res. 33, 3092 (2018).
28.Senkov, O.N., Scott, J.M., Senkova, S.V., Miracle, D.B., Woodward, C.F., J. Alloys Compd. 509, 6043 (2011).
29.Juan, C.-C., Tsai, M.-H., Tsai, C.-W., Lin, C.-M., Wang, W.-R., Yang, C.-C., Chen, S.-K., Lin, S.-J., Yeh, J.-W., Intermetallics 62, 76 (2015).
30.Han, Z.D., Chen, N., Zhao, S.F., Fan, L.W., Yang, G.N., Shao, Y., Yao, K.F., Intermetallics 84, 153 (2017).
31.Senkov, O.N., Senkova, S.V., Woodward, C., Acta Mater. 68, 214 (2014).
32.Jensen, J., “Characterization of a High Strength, Refractory High Entropy Alloy, AlMo0.5NbTa0.5TiZr,” PhD thesis, The Ohio State University, Columbus, OH (2017).
33.Chen, H., Kauffmann, A., Gorr, B., Schliephake, D., Seemüller, C., Wagner, J.N., Christ, H.-J., Heilmaier, M., J. Alloys Compd. 661, 206 (2016).
34.Senkov, O.N., Woodward, C.F., Mater. Sci. Eng. A 529, 311 (2011).
35.Guo, N.N., Wang, L., Luo, L.S., Li, X.Z., Su, Y.Q., Guo, J.J., Fu, H.Z., Mater. Des. 81, 87 (2015).
36.Liu, Y., Zhang, Y., Zhang, H., Wang, N., Chen, X., Zhang, H., Li, Y., J. Alloys Compd. 694, 869 (2017).
37.Chen, H., Kauffmann, A., Laube, S., Choi, I.-C., Schwaiger, R., Huang, Y., Lichtenberg, K., Müller, F., Gorr, B., Christ, H.-J., Heilmaier, M., Metall. Mater. Trans. A 49, 772 (2017).
38.Zhang, B., Gao, M.C., Zhang, Y., Yang, S., Guo, S.M., Mater. Sci. Technol. 31, 1207 (2015).
39.Zhang, Y., Yang, X., Liaw, P.K., JOM 64, 830 (2012).
40.Senkov, O.N., Gorsse, S., Miracle, D.B., Acta Mater . 175, 394 (2019).
41.Huang, E.W., Liaw, P.K., Porcar, L., Liu, Y., Liu, Y.-L., Kai, J.-J., Chen, W.-R., Appl. Phys. Lett. 93, 161904 (2008).
42.Cao, B., Yang, T., Liu, W.-J., Liu, C.T., MRS Bull . 44 (11), 854 (2019).
43.Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., Lu, Z.P., Prog. Mater. Sci. 61, 1 (2014).
44.Miracle, D.B., Senkov, O.N., Acta Mater . 122, 448 (2017).
45.Inoue, A., Kong, F.L., Zhu, S.L., Greer, A.L., MRS Bull . 44 (11), 867 (2019).
46.Huang, E.-W., Qiao, J., Winiarski, B., Lee, W.-J., Scheel, M., Chuang, C.-P., Liaw, P.K., Lo, Y.-C., Zhang, Y., Di Michiel, M., Sci. Rep. 4, 4394 (2014).
47.Wang, W.H., Prog. Mater. Sci. 52, 540 (2007).
48.Qiao, J.W., Sun, A.C., Huang, E.W., Zhang, Y., Liaw, P.K., Chuang, C.P., Acta Mater . 59, 4126 (2011).
49.Qiao, J., Jia, H., Liaw, P.K., Mater. Sci. Eng. R 100, 1 (2016).
50.An, K., VDRIVE-Data Reduction and Interactive Visualization Software for Event Mode Neutron Diffraction (2012).
51.Lee, C., Song, G., Gao, M.C., Feng, R., Chen, P., Brechtl, J., Chen, Y., An, K., Guo, W., Poplawsky, J.D., Li, S., Samaei, A.T., Chen, W., Hu, A., Choo, H., Liaw, P.K., Acta Mater . 160, 158 (2018).
52.Santodonato, L.J., Zhang, Y., Feygenson, M., Parish, C.M., Gao, M.C., Weber, R.J.K., Neuefeind, J.C., Tang, Z., Liaw, P.K., Nat. Comm. 6, 5964 (2015).
53.Diao, H., Ma, D., Feng, R., Liu, T., Pu, C., Zhang, C., Guo, W., Poplawsky, J.D., Gao, Y., Liaw, P.K., Mater. Sci. Eng. A 742, 636 (2019).
54.Harjo, S., Ito, T., Aizawa, K., Arima, H., Abe, J., Moriai, A., Iwahashi, T., Kamiyama, T., Mater. Sci. Forum 681, 443 (2011).
55.Bourke, M.A.M., Dunand, D.C., Ustundag, E., Appl. Phys. A 74, s1707 (2002).
56.Santisteban, J.R., Daymond, M.R., James, J.A., Edwards, L., J. Appl. Crystallogr. 39, 812 (2006).
57.Woo, W., Huang, E.-W., Yeh, J.-W., Choo, H., Lee, C., Tu, S.-Y., Intermetallics 62, 1 (2015).
58.Liu, Y.-C., Chen, C.H., Chen, J.Y., Chiu, M.S., Chou, P.J., Huang, C.S., Fann, S., Kuo, C.C., Lee, T.Y., Liang, C.C., J. Phys. Conf. Ser. 874, 012020 (2017).
59.Chen, X., Dejoie, C., Jiang, T., Ku, C.-S., Tamura, N., MRS Bull . 41, 445 (2016).
60.Tsai, Y.-W., Chang, Y.-Y., Wu, Y.-H., Lee, K.-Y., Liu, S.-L., Chang, S.-L., Opt. Express 24, 30360 (2016).
61.Guo, W., Dmowski, W., Noh, J.-Y., Rack, P., Liaw, P.K., Metall. Mater. Trans. A 44A, 1994 (2013).
62.Cheng, B., Zhang, F., Lou, H., Chen, X., Liaw, P.K., Yan, J., Zeng, Z., Ding, Y., Zeng, Q., Scr. Mater. 161, 88 (2019).
63.Calder, S., An, K., Boehler, R., Dela Cruz, C.R., Frontzek, M.D., Guthrie, M., Haberl, B., Huq, A., Kimber, S.A.J., Liu, J., Molaison, J.J., Neuefeind, J., Page, K., dos Santos, A.M., Taddei, K.M., Tulk, C., Tucker, M.G., Rev. Sci. Instrum. 89, 092701 (2018).
64.Huang, E.W., Barabash, R.I., Clausen, B., Liu, Y.-L., Kai, J.-J., Ice, G.E., Woods, K.P., Liaw, P.K., Int. J. Plast. 26, 1124 (2010).
65.Agnew, S.R., Tomé, C.N., Brown, D.W., Holden, T.M., Vogel, S.C., Scr. Mater. 48, 1003 (2003).
66.Wang, H., Li, S., Li, D., Proust, G., Gan, Y., Yan, K., Tang, D., Wu, P., Peng, Y., MRS Bull . 44 (11), 873 (2019).
67.Conduit, B.D., Jones, N.G., Stone, H.J., Conduit, G.J., Scr. Mater. 146, 82 (2018).
68.Tshitoyan, V., Dagdelen, J., Weston, L., Dunn, A., Rong, Z., Kononova, O., Persson, K.A., Ceder, G., Jain, A., Nature 571, 95 (2019).
69.Green, M.L., Choi, C.L., Hattrick-Simpers, J.R., Joshi, A.M., Takeuchi, I., Barron, S.C., Campo, E., Chiang, T., Empedocles, S., Gregoire, J.M., Kusne, A.G., Martin, J., Mehta, A., Persson, K., Trautt, Z., Van Duren, J., Zakutayev, A., Appl. Phys. Rev. 4, 011105 (2017).
70.Wang, X.L., Holden, T.M., Rennich, G.Q., Stoica, A.D., Liaw, P.K., Choo, H., Hubbard, C.R., Physica B 385–386, 673 (2006).
71.Huang, S., Gao, Y., An, K., Zheng, L., Wu, W., Teng, Z., Liaw, P.K., Acta Mater . 83, 137 (2015).
72.Huang, E.W., Yu, D., Yeh, J.-W., Lee, C., An, K., Tu, S.-Y., Scr. Mater. 101, 32 (2015).
73.An, K., Chen, Y., Stoica, A.D., MRS Bull . 44 (11), 878 (2019).
74.Kim, G., Diao, H., Lee, C., Samaei, A.T., Phan, T., Jong, M., An, K., Ma, D., Liaw, P.K., Chen, W., Acta Materialia (forthcoming), https://doi.org/10.1016/j.actamat.2019.09.026.
75.Cao, C., Yao, G., Jiang, L., Sokoluk, M., Wang, X., Ciston, J., Javadi, A., Guan, Z., De Rosa, I., Xie, W., Lavernia, E.J., Schoenung, J.M., Li, X., Sci. Adv. 5, eaaw2398 (2019).
76.Humphry-Baker, S.A., Garroni, S., Delogu, F., Schuh, C.A., Nat. Mater. 15, 1280 (2016).
77.Chen, L.-Y., Xu, J.-Q., Choi, H., Pozuelo, M., Ma, X., Bhowmick, S., Yang, J.-M., Mathaudhu, S., Li, X.-C., Nature 528, 539 (2015).
78.Huang, E.-W., Chou, H.-S., Tu, K.N., Hung, W.-S., Lam, T.-N., Tsai, C.-W., Chiang, C.-Y., Lin, B.-H., Yeh, A.-C., Chang, S.-H., Chang, Y.-J., Yang, J.-J., Li, X.-Y., Ku, C.-S., An, K., Chang, Y.-W., Jao, Y.-L., Sci. Rep. 9, 14788 (2019).
79.Lin, P.H., Chou, H.S., Huang, J.C., Chuang, W.S., Jang, J.S.C., Nieh, T.G., MRS Bull . 44 (11), 860 (2019).

High-temperature materials for structural applications: New perspectives on high-entropy alloys, bulk metallic glasses, and nanomaterials

  • E-Wen Huang (a1) and Peter K. Liaw (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed