Skip to main content Accessibility help
×
Home

Hot-carrier dynamics in catalysis

  • Hayk Harutyunyan (a1), Figen Suchanek (a2), Robert Lemasters (a3) and Jonathan J. Foley (a4)

Abstract

Nanoscale materials that contain metallic components can be designed to have excellent light-harvesting capabilities, and can also be used to direct the flow of energy from incident photons into small molecules at or near the surface of metal nanoparticles. One promising route for energy flow is through so-called hot charge carriers, which are optically excited on metal nanoparticles and subsequently transferred to molecules/materials that share an interface with the metal. This article provides an overview of the fundamentals of hot-carrier generation and transfer, discusses both theoretical and experimental means for interrogating these processes, and discusses several potential societally important applications of hot-carrier-driven chemistry to solar fuels and sustainable chemistry.

Copyright

References

Hide All
1.Mennucci, B., Corni, S., Nat. Rev. Chem. 3, 315 (2019).
2.Linic, S., Christopher, P., Ingram, D.B., Nat. Mater. 10, 911 (2011).
3.Brongersma, M.L., Halas, N.J., Norldlander, P., Nat. Nanotechnol. 10, 25 (2019).
4.Zhang, Y., He, S., Guo, W., Hu, Y., Huang, J., Mulcahy, J.R., Wei, W.D., Chem. Rev. 118, 2927 (2018).
5.Zhang, N., Han, C., Xu, Y.-J., Foley IV, J.J., Zhang, D.. Codrington, J., Gray, S.K., Sun, Y., Nat. Photonics 10, 473 (2016).
6.Codrington, J., Eldabagh, N., Fernando, K., Foley IV, J.J., ACS Photonics 4, 552 (2017).
7.Hartland, G.V., Besteiro, L.V., Johns, P., Govorov, A.O., ACS Energy Lett . 2, 1641 (2017).
8.Yan, L., Wang, F., Meng, S., ACS Nano 10, 5452 (2016).
9.Long, R., Prezhdo, O.V., J. Am. Chem. Soc. 136, 4343 (2014).
10.Bohren, C.F., Huffman, D.R., Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).
11.Mischenko, M.I., Travis, L.D., Mackowski, D.W., J. Quant. Spectrosc. Radiat. Transf. 55, 535 (1996).
12.Draine, B.T., Flatau, P.J., J. Opt. Soc. Am. A 11, 1491 (1994).
13.Jin, J.-M., The Finite Element Method in Electromagnetics (Wiley, 2014, Hoboken, NJ).
14.Taflov, A., Hagness, S.C., Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, Boston, 2005).
15.Govorov, A.O., Zhang, H., Gun’ko, Y.K., J. Phys. Chem. C 117, 16616 (2013).
16.Manjavacs, A., Liu, J.G., Kulkarni, V., Nordlander, P., ACS Nano 8, 7630 (2014).
17.Ilawe, N.V., Owiedo, M.B., Wong, B.M., J. Chem. Theory Comput. 13, 3442 (2017).
18.Mukherjee, S., Libisch, F., Large, N., Neumann, O., Brown, L., Cheng, J., Lassiter, J.B., Carter, E.A., Nordlander, P., Halas, N.J., Nano Lett . 13, 240 (2013).
19.Cai, Y.-Y., Liu, J.G., Tauzin, L.J., Huang, D., Sung, E., Zhang, H., Joplin, A., Chang, W.-S., Nordlander, P., Link, S., ACS Nano 12, 976 (2018).
20.Wu, K., Chen, J., McBride, J.R., Lian, T., Science 349, 632 (2015).
21.Harutyunyan, H., Martinson, A.B.F., Rosenmann, D., Khorashad, L.K., Besteiro, L.V., Govorov, A.O., Wiederrecht, G.P., Nat. Nanotechnol. 10, 770 (2015).
22.Giugni, A., Torre, B., Toma, A., Francardi, M., Malerba, M., Alabastri, A., Zaccaria, R.P., Stockman, M.I., Fabrizio, E.D., Nat. Nanotechnol. 8, 845 (2013).
23.Lozan, O., Sundararaman, R., Ea-Kim, B., Rampnoux, J.-M., Narang, P., Dilhaire, S., Lalanne, P., Nat. Commun. 8, 1656 (2017).
24.Sun, C.-K., Vallee, F., Acioli, L.H., Ippen, E.P., Fujimoto, J.G., Phys. Rev. B 50, 15337 (1994).
25.Hartland, G.V., Chem. Rev. 111, 3858 (2011).
26.Brown, A.M., Sundararaman, R., Narang, P., Schwartzberg, A.M., Goddard, W.A., Atwater, H.A., Phys. Rev. Lett. 118, 087401 (2017).
27.Sykes, M.E., Stewart, J.W., Akselrod, G.M., Kong, X.-T., Wang, Z., Gosztola, D.J., Martinson, A.B.F., Rosenmann, D., Mikkelsen, M.H., Govorov, A.O., Wiederrecht, G.P., Nat. Commun. 8, 986 (2017).
28.Heilpern, T., Manjare, M., Govorov, A.O., Wiederrecht, G.P., Gray, S.K., Harutyunyan, H., Nat. Commun. 9, 1853 (2018).
29.Landau, L., J. Phys. 10, 25 (1946).
30.Kreibig, U., Genzel, L., Surf. Sci. 156, 678 (1985).
31.Clavero, C., Nat. Photonics 8, 95 (2014).
32.Block, A., Liebel, M., Yu, R., Spector, M., Sivan, Y., García de Abajo, F.J., van Hulst, N.F., Sci. Adv. 5, eaav8965 (2019).
33.Nicholls, L.H., Stefaniuk, T., Nasir, M.E., Rodríguez-Fortuño, F.J., Wurtz, G.A., Zayats, A.V., Nat. Commun. 10, 2967 (2019).
34.Haug, T., Klemm, P., Bange, S., Lupton, J.M., Phys. Rev. Lett. 115, 67403 (2015).
35.Cai, Y.-Y., Sung, E., Zhang, R., Tauzin, L.J., Liu, J.G., Ostovar, B., Zhang, Y., Chang, W.-S., Nordlander, P., Link, S., Nano Lett . 19, 1067 (2019).
36.Beversluis, M.R., Bouhelier, A., Novotny, L., Phys. Rev. B 68, 115433 (2003).
37.Roloff, L., Klemm, P., Gronwald, I., Huber, R., Lupton, J.M., Bange, S., Nano Lett . 17, 7914 (2017).
38.Mertens, J., Kleemann, M.-E., Chikkaraddy, R., Narang, P., Baumberg, J.J., Nano Lett . 17, 2568 (2017).
39.Detz, R.J., Reek, J.N.H., van der Zwaan, B.C.C., Energy Environ. Sci. 11, 1653 (2018).
40.Lee, J., Mubeen, S., Ji, X., Stucky, G.D., Moskovits, M., Nano Lett . 12, 5014 (2012).
41.Mubeen, S., Lee, J., Singh, N., Krämer, S., Stucky, G.D., Moskovits, M., Nat. Nanotechnol. 8, 247 (2013).
42.Robatjazi, H., Bahauddin, S.M., Doiron, C., Thomann, I., Nano Lett . 15, 6155 (2015).
43.Neatur, S., Maciá-Agulló, J.A., Conceptión, P., Garcia, H., J. Am. Chem. Soc. 136, 15969 (2014).
44.Wang, F., Li, C., Chen, H., Jiang, R., Sun, L.-D., Li, Q., Wang, J., Yu, J.C., Yan, C.-H., J. Am. Chem. Soc. 135, 5599 (2013).
45.Guselnikova, O., Olshtrem, A., Kalachyova, Y., Panov, I., Postnikov, P., Svorcik, V., Lyutokov, O., J. Phys. Chem. C 122, 26613 (2018).

Hot-carrier dynamics in catalysis

  • Hayk Harutyunyan (a1), Figen Suchanek (a2), Robert Lemasters (a3) and Jonathan J. Foley (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed