Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-19T20:33:55.707Z Has data issue: false hasContentIssue false

In Situ Observations of Misfit Dislocations in Lattice-Mismatched Epitaxial Semiconductor Heterostructures

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

This article describes the application of transmission electron microscopy (TEM) to real-time, in situ dynamic observations of dislocations in strained epitaxial semiconductor heterostructures. Such experiments allow us to directly observe the formation, motion, and interaction of mis-fit dislocations. Preliminary extension of this work to the in situ measurement of the electrical properties of misfit dislocations will also be described.

The Fundamental Scientific Issue

It is well established that it is possible to grow a thin, coherent epitaxial layer on a substrate with a slightly different lattice parameter, as illustrated in Figure la. This concept is known as strained layer epitaxy. In the fields of semiconductor physics and device design, strained layer epitaxy offers many exciting new opportunities (see Reference 1 for a review). A coherently strained structure, however, will store an enormous elastic strain energy density in the epitaxial layer, due to the distortion of interatomic bonds. Therefore, as the epitaxial layer increases in thickness during growth, it will become increasingly energetically favorable to relax this strain energy. A number of relaxation routes exist: (1) roughening of the epitaxial layer surface (see, for example, Reference 2); (2) interdiffusion of the layers (this will generally only be significant at temperatures which are a large fraction of the layer melting temperatures (e.g., Reference 3)); and (3) introduction of a dislocation network into the substrate/epilayer interface, which as shown schematically in Figure lb, will allow the epitaxial layer to relax toward its bulk lattice parameter. This dislocation mechanism is the most prevalent strain relaxation mechanism at typical crystal growth and processing temperatures, and we concentrate on this mechanism in our experimental studies.

Type
Materials Science in the Electron Microscope
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Strained Layer Superlattices” in Semiconductors and Semimetals, Volumes 32 and 33, edited by Pearsall, T.P. (Academic Press, New York, 1991).Google Scholar
2.Snyder, C.W., Orr, B.G., Kessler, D., and Sander, L.M., Phys. Rev. Lett. 66 (1991) p. 3032.CrossRefGoogle Scholar
3.Fiory, A.T., Bean, J.C., Hull, R., and Nakahara, S., Phys. Rev. B 31 (1985) p. 4063.CrossRefGoogle Scholar
4.Frank, F.C. and van der Merwe, J.H., Proc. R. Soc. London, Ser. A 198 p. 205; 198 F.C. Frank and J.H. van der Merwe, Proc. R. Soc. London, Ser. A. p. 216; 200 p. 125 (1949).Google Scholar
5.Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 27 (1974) p. 118; 29 (1975) p. 273; 32 (1976) p. 265.Google Scholar
6.Bean, J.C., Feldman, L.C., Fiory, A.T., Nakahara, S., and Robinson, I.K., J. Vac. Sci. fechnol. A 2 (1984) p. 436.CrossRefGoogle Scholar
7.Kasper, E., Herzog, H-J., and Kibbel, H., Appl. Phys. 8 (1975) p. 199.CrossRefGoogle Scholar
8.Green, M.L., Weir, B.E., Brasen, D., Hsieh, Y.F., Higashi, G., Feygenson, A., Feldman, L.C., and Headrick, R.L., J. Appl. Phys. 69 (1991) p. 745.CrossRefGoogle Scholar
9.Fritz, I.J., Appl. Phys. Lett. 51 (1987) p. 1080.CrossRefGoogle Scholar
10.Dodson, B.W. and Tsao, J.Y., Appl. Phys. Lett. 51 (1987) p. 1325.CrossRefGoogle Scholar
11.Hull, R., Bean, J.C., Werder, D.J., and Leibenguth, R.E., Phys. Rev. B 40 (1989) p. 1681.CrossRefGoogle Scholar
12. Gatan, Inc., 780 Commonwealth Drive, Warrendale, PA 15086.Google Scholar
13.Hull, R., Bean, J.C., and Buescher, C., J. Appl. Phys. 66 (1989) p. 5837.CrossRefGoogle Scholar
14.Hull, R. and Bean, J.C., J. Vac. Sci. Technol. A 7 (1989) p. 2580.CrossRefGoogle Scholar
15.Hull, R. and Bean, J.C., Appl. Phys. Lett. 54 (1989) p. 925.CrossRefGoogle Scholar
16.Hull, R., Bean, J.C., Bonar, J.M., Higashi, G.S., Short, K.T., Temkin, H., and White, A.E., Appl. Phys. Lett. 56 (1990) p. 2445.CrossRefGoogle Scholar
17.Hull, R., Bean, J.C., Bahnck, D., Peticolas, L.J., Short, K.T., and Unterwald, E.C., J. Appl. Phys. 70 (1991) p. 2052.CrossRefGoogle Scholar
18.Hull, R. and Bean, J.C., Phys. Status Solidi A 138 (1993) p. 533.CrossRefGoogle Scholar
19.Hull, R., Bean, J.C., Peticolas, L.J., and Bahnck, D., Appl. Phys. Lett. 59 (1991) p. 964.CrossRefGoogle Scholar
20.Hull, R. and Bean, J.C., Critical Rev. Solid State Mater. Sci. 17 (1992) p. 507.CrossRefGoogle Scholar
21.Ross, F.M., Hull, R., Bahnck, D., Bean, J.C., Peticolas, L.J., and King, C.A., Appl. Phys. Lett. 62 (1993) p. 1426.CrossRefGoogle Scholar
22. See George, A. and Rabier, J., Rev. Phys. Appl. 22 (1987) p. 1941 for a review.CrossRefGoogle Scholar
23.Hirth, J.P. and Lothe, J., Theory of Dislocations (McGraw-Hill, New York, 1968).Google Scholar
24.Tuppen, C.G. and Gibbings, C.J., J. Appl. Phys. 68 (1990) p. 1526.CrossRefGoogle Scholar
25.Yamashita, Y., Maeda, K., Fujita, K., Usami, N., Suzuki, K., Fukatsu, S., Mera, Y., and Shiraki, Y., Philos. Mag. Lett. 67 (1993) p. 165.CrossRefGoogle Scholar
26.Houghton, D.C., J. Appl. Phys. 70 (1991) p. 2136.CrossRefGoogle Scholar
27.Nix, W.A., Noble, D.B., and Turlo, J.F., in Thin Films: Stresses and Mechanical Properties II, edited by Doerner, M., Oliver, W.C., Pharr, G.M., and Brotzen, F.R. (Mater. Res. Soc. Symp. Proc. 188, Pittsburgh, PA, 1990) p. 315.Google Scholar
28.Sze, S.M., Physics of Semiconductor Devices, 2nd ed., (Wiley & Sons, New York, 1981).Google Scholar
29. Constructed in conjunction with Gatan, Inc., 780 Commonwealth Drive, Warrendale, PA 15086.Google Scholar
30.Bull, C., Ashburn, P., Booker, G.R., and Nicholas, K.H., Solid State Electronics 22 (1979) p. 95.CrossRefGoogle Scholar
31.Hull, R., Appl. Phys. Lett. 63 (1993) p. 2291.CrossRefGoogle Scholar